Energy Resolution in Gerda's Phase I

Francis Froborg

University of Zurich

Zurich PhD Seminar 2011 29 August 2011

Motivation	Calibration System	Signal Processing	Summary O
Overview			

- How to get information about the energy resolution?The Calibration System
- How to optimize the energy resolution?Signal Processing

Summary

Motiva	tion
000	

Calibration System

Signal Processing

Neutrinoless Double Beta Decay

0νββ

•
$$(Z,A) \rightarrow (Z+2,A) + 2e^{-}$$

•
$$\Delta L = 2$$

•
$$\left|T_{1/2}^{0\nu}\right|^{-1} = G^{0\nu}(Q_{\beta\beta}, Z) \left|M_{0\nu}\right|^2 \langle m_{\beta\beta}^2 \rangle \sim \left|10^{25} \text{ y}\right|^{-1}$$

•
$$\langle m_{\beta\beta} \rangle = \left| \sum_{i} U_{ei}^2 m_i \right|$$

Motivation ○●○ Calibration System

Signal Processing

Summary O

The Experimental Challenge

Sensitivity

$$T_{1/2}^{0\nu} \propto \langle m_{\beta\beta} \rangle^{-2} \propto const \ \sqrt{\frac{M \times t}{\Delta E \times B}}$$

- M Mass
 - t Time
- B Background rate
- ΔE Energy resolution

Maneschg, Merle, Rodejohan, ar-Xiv:0812.0479v1
 Motivation
 Calibration System
 Signal Processing
 Summary

 000
 00000000
 0

 The GERmanium Detector Array (GERDA)

Naked High purity ⁷⁶Ge crystals placed in LAr

Phase I goals

Exposure 15 kg y Background 10^{-2} cts/(keV kg y) Half-life $T_{1/2} > 2.2 \times 10^{25}$ y Majorana mass $m_{ee} < 0.27$ eV

Phase II goals

Exposure 100 kg y Background 10^{-3} cts/(keV kg y) Half-life $T_{1/2} > 15 \times 10^{25}$ y Majorana mass $m_{ee} < 0.11$ eV

Overview

Calibration System

Signal Processing

Overview

Calibrations

- 4 strings with 3 detectors each
- 3^{228} Th sources with A = 10 15 kBq
- Park position in the lock of the experiment
- Sources shielded by 6 cm of Ta
- 1 Calibration run per week:
 - 2 different *z* positions
 - \sim 30 min run time per position

Calibration System

Signal Processing

Summary O

The Calibration System

Mo	tiv	ati	ion	

Positioning Systems

Absolute Encoder

- Measures rotation of spindle
- Correctly calibrated, it gives the absolute position even in case of a power shut down
- Accuracy depends on reproducibility of winding of steel band

Incremental Encoder

- Two optical sensors (reflection light barriers) count holes in perforated steel band
- Chronology of impulses of sensors define forward and backward direction
- Accuracy depends on distance of holes and sensors and accuracy of perforation

Motivation 000	Calibration System	Signal Processing	Summa O
Controller			
System Con	trol Unit		

Firmware with 3 functional blocks per lowering system: Motor, positioning and error control

Remote Control

LabView Program to operate and monitor all 3 lowering systems

PhD Thesis by Michal Tarka

Francis Froborg	Energy Resolution in GERDA's Phase I
-----------------	--------------------------------------

Calibration System

Signal Processing

Positioning Tests

Incremental Encoder vs. Laser Rangefinder

- Sources moved down to 6.5 m in 0.2 m steps
- Tolerable discrepancies of up to 3 mm found

Incremental vs. Absolute Encoder

- Every system showed different deviation
- Discrepancy of up to 15 mm
- Calibration function for each system implemented
- Accuracy after calibration ±2 mm

Motivation	Calibration System	Signal Processing	Summary
Other Tests			

Oscillation Tests

- During movements: Oscillations < 5 mm and rotations 25-30° well below limits
- Entering LAr: Oscillations and rotations enhances by factor of 2 due to boiling
 - \Rightarrow Fixed stop position at LAr level

Error Handling

Malfunction of each subsystem, blockade of source and possible combinations tested successfully

Long Term Stability

About 50 cycles down to 6.5 m and up without any incidents

Mot	iva	tio	n
00			

Calibration System ○○○○○●○ Signal Processing

Some Pictures

Francis Froborg

Energy Resolution in GERDA's Phase I

Calibration System

Signal Processing

Summary O

The Calibration Spectrum

- Phase I: Closed-ended coaxial Ge diodes, p-type
- First string with three natural Ge detectors deployed in June 2010
- First string with enriched detectors deployed in June 2011
- Energy resolution (FWHM@2.6 MeV): 3.6 keV to \sim 5 keV

 Motivation
 Calibration System
 Signal Processing
 Summary

 000
 00000000
 00000000
 0

 Optimization of Energy Resolution
 Signal Processing Chain
 5

Motivation	Calibration System	Signal Processing	Summary
000	0000000	000000	

Preamplifier

- Charge-sensitive preamp integrates incoming pulse
- Charge stored on capacitor C_f
- Charge removed from *C_f* via resistance feedback network with characteristic time scale

$$\tau_{\text{preamp}} \equiv RC_f$$

 τ_{preamp} has to balance ballistic deficit and pile-up rate

 Motivation
 Calibration System
 Signal Processing
 Summary

 000
 00000000
 00000000
 0

Determination of Decay Time

- Fit exponential tail of pulse
- Generate histogram with fit results
- Separate for each detector
- Use peak value for further analysis

Preliminary Result

 $\tau_{\rm preamp} \simeq 170 - 210 \,\mu s$

Motivation 000	Calibration System	Signal Processing	Summary O
Amplitude	Distortions		

Undershoot

- Output of preamp is not a step function but has a long but finite tale
- Respond of shaping network is an undershoot

Baseline Shift

• High event rates lead to a shift of the baseline below its true zero

Mo	otiva	atic	
00	00		

Calibration System

Signal Processing

Baseline

Baseline Restoration

- Fit at baseline: base = $a + b \cdot exp(-t/\tau_{pa})$
- Fit window has to be larger than decay time
- Subtract fit result from pulse

Pile-up rejection

- Choose two windows:
 - 1. At beginning of recorded pulse
 - 2. Just before trigger
- Cut, if difference is too large

Noise

• Cut, if baseline spread is too large in chosen window

Motiv	ation

Gauss

Calibration System

Signal Processing ○○○○○●○

Analog

Signal Shaping

- CR-(RC)ⁿ network
- Usually *n* = 4 sufficient
- Equal time constants for differentiation and integration networks

Digital

- Moving Window Deconvolution (MWD) + 2× Moving Window Average (MWA)
- MWD = Differentiation + Pole Zero Cancellation
- MWA = Integration
- All window sizes the same

Advantage

Noise reduction due to frequency filtering

Disadvantage

Small amplitude differences due to rise time changes

Gast

Calibration System

Signal Processing

Summary O

Advantage

Signal Shaping

• Invariant to rise time changes resulting in ballistic deficit

Digital Realization

- MWD + MWA
- Window MWD > Window MWA
- Free parameter determines position at flat top where amplitude

Jordanov and Knoll, 1994

Calibration System

Signal Processing

Summary

Summary and Outlook

- GERDA started commissioning phase in June 2010
- First enriched detectors deployed in June 2011, rest will follow in Sep 2011
- Calibration system is working properly
- Optimization of offline pulse processing to improve energy resolution in progress

