

Actinide Measurements at the TANDY AMS Facility

Johannes Lachner

Laboratory of Ion Beam Physics, ETH Zurich, Switzerland

||0.6 MV Tandy||

Laboratory of

Examples

occurrence of the actinides

- natural occurrence:
 - long-lived ²³²Th & ^{235,238}U in ores, water, sediment
 - elements from Uranium or Thorium decay chains, e.g. ²³⁰Th, ²³¹Pa, ²³⁴U
 - radioisotopes produced by natural neutron irradiation ²³⁶U & ²³⁹Pu
- anthropogenic input
 - nuclear reactors & reprocessing plants
 - atomic bomb explosions

applications

- exploration of the natural levels (²³¹Pa, ²³⁶U, ²³⁹Pu)
- ²³⁶U, ²³⁷Np, Pu isotopes: transport processes of anthropogenic contamination in the environment
- ²³⁷Np, ^{239,240}Pu: dosimetry for late effects of Pu/Np intake

Laboratory of IIII Ion Beam PhysicsIIII

determining actinide concentrations

- AMS determines number of actinide atoms per volume or per mass of a liquid or solid sample
- overall efficiency of the determination has to be known
- → sample is spiked with a known amount (e.g. 10¹⁰ at.) of an isotopic tracer (²³³U, ²⁴²Pu)

- efficiency is given by the tracer yield

AMS setup of actinide measurements

- target: Fe₂O₃ with actinide traces in AI cathode
- beam production: negative oxide molecules

➔ ThO⁻, UO⁻, NpO⁻, PuO⁻

- accelerator operated at 300kV
- in the stripper at the middle of the accelerator: molecule-gas collisions \rightarrow 3+ ions
- detection in gas ionization chamber

Laboratory of

|| Ion Beam Physics||

beam-gas collisions in the stripper

- charge exchange: $UO^{-} \rightarrow UO^{1+}, UO^{2+}, U^{1+}, U^{2+}, U^{3+}, U^{4+}...$
- high charge states suppress molecular background
- equilibrium charge state distribution with mean charge state q
 - \rightarrow depends on cross sections for e⁻-transfers between gas and beam

 \rightarrow depends on stripper gas and beam energy

- high mean charge state at low beam energies $? \rightarrow$ He as stripper gas!

changing the stripper gas

- with Ar as stripper gas: transmission $UO^- \rightarrow U^{3+} \sim 12\%$
- with He as stripper gas: transmission $UO^- \rightarrow U^{3+} \sim 37\%$
- \rightarrow improvement by a factor 3 for actinide measurements!

He gas transport to stripper

- He & Ar stripper gas in bottles outside the accelerator tank
- gas transport via an insulating capillary over a voltage gradient of max. 600kV/50cm
- electric discharges in He destroy the gas inlet capillary

He gas transport to stripper

- removed the gas inlet capillary
- He bottle mounted on the terminal of the accelerator
- disadvantages: ~ no flexibility to use different stripper gases
 - ~ openings of the tank to refill He will be necessary

Two examples of our applications

²³⁶U in the North Sea

dosimetry with ^{239,240}Pu

²³⁶U release by reprocessing plants

- European reprocessing plants (La Hague, Sellafield) released ca. 40-50t U with increasing ²³⁶U content
- $\sigma(^{235}U(n,f))=586$ barn, $\sigma(^{235}U(n,\gamma)^{236}U)=95$ barn

→ in reprocessed fuel: ²³⁶U/²³⁸U~10⁻³

²³⁶U – sampling and chemical preparation

- trace the transport of the ²³⁶U labelled water
- collaboration with BSH Hamburg
- annual sampling for monitoring of the North Sea
- analysis of ca. 30 surface water samples (15L)
- extraction of U in precipitations and purification on anion exchange columns (UTEVA resin)

Laboratory of

|| Ion Beam Physics||

²³⁶U in the North Sea

- in north sea surface water:
 236U/238U~10⁻⁸-10⁻⁹
- in reprocessed fuel: ²³⁶U/²³⁸U~10⁻³
- in the ocean water: 3µg/L U
 Atlantic Surface water: ²³⁶U/²³⁸U≤10⁻⁹

^{239,240}Pu for dosimetry

- monitoring of radioactivity intake in exposed workers of research and nuclear industry in blood & urine samples
- inhalation may lead to a long-term exposure and to tumours in lung, skeleton and liver
- usually performed by counting techniques

0.6 MV Tandy

- general aim in monitoring: verify that no exposure is/was present
- ²³⁹Pu activities of µBq per liter urine sample: 10 µBq ≈10⁷ atoms ≈ 2 fg
- AMS is an attractive method for long-lived radioisotopes \rightarrow overall efficiency up to 10⁻⁴
- measurement relative to a ²⁴²Pu tracer gives the concentration

Laboratory of

Ion Beam Physics

^{239,240}Pu for dosimetry

- collaboration with Femtomass/Chalk River Labs, Canada
- available from NIST: standard dilution series with unknown concentrations of ²³⁹Pu and ²⁴⁰Pu in artificial urine
- returned raw measured values to NIST
- blank corrected values agree perfectly with 1:1 line (deviation of 1.5%±3.5%)
- concentrations in the fg level can be determined

Summary & Outlook

setup & improvements of the spectrometer

- He as stripper gas improves efficiency
- new construction of the stripper gas supply was necessary
- further reconstruction to regain flexibility of using different stripper gases

routine measurements

- ²³⁶U/²³⁸U in water
 - more samples from the North Sea 2009, 2010, 2011
 - Atlantic transect
- actinides for dosimetry
 - measurement of Pu samples is certified and ready for external users
 - development of Np detection in progress

Summary & Outlook

setup & improvements of the spectrometer

- He as stripper gas improves efficiency
- new construction of the stripper gas supply was necessary
- further reconstruction to regain flexibility of using different stripper gases

routine measurements

- ²³⁶U/²³⁸U in water
 - more samples from the North Sea 2009, 2010, 2011
 - Atlantic transect
- actinides for dosimetry
 - measurement of Pu samples is certified and ready for external users
 - development of Np detection in progress

3+ molecules surviving the stripping process

- stripper gas density dependent counting rates indicate existence of 3+ molecules:
 ²³²ThH³⁺, ²³⁵UH³⁺ and ²³⁸UH³⁺
- dangerous for sensitive ²³⁶U studies: molecular isobars cannot be separated in the detector
- suppression of ²³⁵UH³⁺ molecules demands for higher stripper thicknesses

Sample name	236U/238U			
ZUTRI	4.1*10 ⁻⁹	ETHZ in-house standard		
Vienna-KkU	6.98*10 ⁻¹¹	motorial from D. Staiar V/EDA		
LOT2061	6*10 ⁻¹²	malenai nom P. Sleier, VERA		

239Pu 240Pu 241Pu

14a

24.1ka 6.6ka

²³⁷Np for dosimetry

- collaboration with DTU Risø

0.6MV Tandy

- no appropriate Np isotope available as tracer
 - → measurement normalization against spike ²⁴²Pu
- critical: same behaviour of both elements in chemistry and AMS measurement?
- ✓ reliable chemical separation of both elements possible
- ✓ AMS efficiency for Np detection lower than for Pu (0.23:1)
- formation of NpO⁻ depends on the target matrix, while the PuO⁻ formation does not

				237Np 2.1Ma			
²⁴² Pu	U ka	234U 246ka	235U 704Ma	236U 23Ma	238U 4.5Ga		
emistry							
237/242							
-0.23:1 line							
						/	

238Pu

88a

