Results from a 250L LAr TPC exposed to a tagged low-p charged particle beam (T32 @J-PARC)

Devis Lussi

Institute for Particle Physics, ETH Zurich

Doktorandenseminar - 29.Aug. 2011

Outline

- Introduction
- Experimental setup
- Run description and data taking
- Simulation, reconstruction and analysis
- First results
- Summary

Introduction - The LAr TPC

Basic physical properties of LAr

density	1.4 g/cm ³	
boiling point @1 atm	87.3 K	
triple point	0.689 bar / 83.8 K	
<de dx=""> (MIP)</de>	2.1 MeV/cm	
radiation length	14.0 cm	
Molière radius	9.25 cm	
nucl. interaction length	83.6 cm	
Wion (1 MeV e-)	23.6 eV	
W _{photon} (1 MeV e-)	19.5 eV	

moreover: argon is available and cheap

Charge yield after e-ion recomb. (mip)

~ 1 fC/mm (~ 6000 electrons/mm)

Feasibility of large LAr Time Projection Chambers (LAr-TPCs)

Monday, August 29, 2011

Scintillation properties

- LAr has a high scintillation yield at 128 nm
 - light can be used as trigger

Charge transport

- No electron attachment
 - charge transport in LAr possible
 - But: ultra high purity is required!
- Drift velocity = $2 \text{ mm/}\mu\text{s}$ with E=1 kV/cm

Small diffusion (σ≈mm after several m of drift)

3

Introduction - T32 experiment

T32 collaboration:

ETHZ, KEK, Iwate and Waseda

Purpose of the T32 experiment:

Measurements with well defined charged particle test beam at the J-PARC slow extraction allows... ... to benchmark performance of the LAr-TPC (250L double phase LAr LEM-TPC with 2D anode readout) ... to develop general purpose simulation and reconstruction software for LAr detectors

➡ Moreover: Kaon ID relevant for proton decay searches: nucleon lifetime of 10³⁵ years with 100 kT LAr and 10 years of exposure reachable

strategy:

• October 2010 operate a preliminary single phase LAr - TPC in the K1.1 beam line @J-PARC hadron facility

• 2012: final test beam with double phase readout

hep-ph/0701101, 2007

The 250L single phase LAr - TPC

		Fiducial mass	170kg
78 cm 42 cm 76 strips (1cm) anode	October 2010 beam test configuration	Total LAr mass	~400kg
		Field cage dimension	42cm x 42cm x 78cm
		Fiducial volume	40cm x 40cm x 76cm
<complex-block></complex-block>	40cm 78cm	Typical Drift Field	~200V / cm
		Maximum drift voltage	12kV
		Readout method	single phase (temporary)
	250L chamber	Number of readout channels	76 strips (1cm)

Experimental setup at KEK

K1.1BR with instrumentation @ J-PARC

K1.1BR beam properties:

- 800MeV/c K/ π /p/e and 200 MeV/c π /e
- K/π~1/4 (max)
- a few K+ / spill (6s)
- degrading momentum using Lead Glass blocks
- · beam width @ deg. σ_x ~8cm, σ_Y ~6cm

October 2010 run

The beamline instrumentation (Fitch Cherenkov and TOF) was used to trigger:

- ►2'500 positrons
- ►1'500 protons
- ▶80'000 Kaons
- ►100'000 pions

➡ total ≈ 200'000 triggers

external PID (≈100% for K+):

Some beam events...

▶ strength of the LAr-TPC in PID obvious (even with 1D readout, coarse pitch, noise)
BUT: S/N is poor, coarse pitch of 1 cm, only 1D readout (3D reconstruction not possible)

Event reconstruction: Hits and clusters

Hit finding

Discriminate the signals coming from an ionizing particle from electronic noise

procedure

search algorithm checks amplitude, width and fall time of hit candidates --> cuts have to be optimized!
2nd. step: hits are further parametrized to extract the important physical information (integral≈charge, time, shape)

Cluster finding

an algorithm groups adjacent hits together:

- simplifies tracking and vertex finding
- ▶ separate events from pile-up

2D tracking and vertex finding

• Two algorithms (hough and chi2) implemented to reconstruct the decay point in simple two prong events have been implemented.

• Hough-method:

- The hit coordinates (of a cluster) are transformed into the Hough space (2 parameters: angle of straight lines and distance from origin)
- 2. The maximum bin in the hough-space defines the most evident straight track.
- 3. Back to the real coordinate space hits close to the straight track are removed from the set of hits
- 4. Repeat step 2. and 3. three times.
- 5. The algorithm looks for a charge maximum close to the intersection of two lines

chi2-method:

- 1. The cluster inside the beam-window is selected
- 2. Starting from the left, hits are fitted with a straight line.
- 3. The stopping point is found based on an increase of the chi2.
- 4. The algorithm looks for a charge maximum close to the intersection of the two lines

Two reconstructed Monte-Carlo generated events

MC simulation: Geant3/4

A detailed MC simulation with full digitization has been implemented within a general purpose LAr-TPC reconstruction and simulation framework (fullreco/Qscan).

following issues are included:

•full beamline geometry with degraders and counters

- •charge quenching due to ion electron recombination
- •charge loss due to electronegative contamination of the pure LAr
- •inhomogeneous drift field (external computation)
- digitization with true preamplifier response
- realistic electronic noise (extracted from empty data events) including also coherent component
- trigger and degrader configuration

Charge loss (drift):

$$Q(t=t_{drift})=Q \cdot e^{-t/\tau}$$

3D display with MC tracks

Charge recombination (Birks law):

$$Q = Q_0 \frac{A}{1 + (k / \varepsilon) \left(\frac{dE}{dx}\right)}$$

A = 0.800 +- 0.003 k = 0.0486 +- 0.0006 [kV/cm*g/cm2/MeV]

NIM **A523**, 275-286 (2004)

Cosmic ray reconstruction - LAr purity

 In order to monitor the LAr purity inside the detector we had various CR runs
 Cosmic data was collected with a coincidence of the two internal TPB-coated Hamamatsu R6041 PMTs

reconstructed straight tracks

Extraction of LAr purity from CR runs

Single dataset example

- Dataset 87 hours after LAr filling
- Use ~100 well reconstructed, straight crossing muon tracks
- Correct charge according to cosmic ray injection angle (1D-readout: only one out of two is known)
- divide drift volume into slices of equal drift time
- fit a Landau function to the charge distribution of each drift-time-slice
- The lifetime is extracted by fitting an exponential to the resulting Lifetime by fitting MPV vs time distribution

Time evolution of purity

At the beginning : τ ≈ 670µs (~0.45 ppb)
At the end : τ ≈ 385µs (~0.78 ppb)
Purity degradation of about 2 ppt/hour.

gas purification system not fully efficient

800 MeV/c pion data-MC comparison

Looking at crossing pion tracks we observed a non uniformity in charge collection efficiency
The origin on this non-uniformity is due to a grid and its supporting frame distorting the electric field
confirmed by field map simulation.

We used the 800 MeV/c pion data to calibrate and equalize the signals on each readout channel:

Reconstructed K+ and π+ samples

Monday, August 29, 2011

Summary

- We have constructed a prototype 250L single phase LAr-TPC
- The 250L-TPC was successfully operated at the K1.1BR @ J-PARC
 - First time ever that a LAr TPC is put in a charged particle beam
 - We have accumulated $\pi/K/p$ and electron tracks with large statistics
- Cosmic rays recorded throughout the run were used to monitor the LAr purity. A small degradation was observed
- A large number of pions and stopping Kaons were reconstructed
- A detailed geant3/4 based MC simulation including non-uniform electric field and realistic noise has been implemented

next steps:

- Finalize data analysis and MC comparison
- the chamber is currently being upgraded to the final double phase / 2D anode readout configuration