Higgs Self-Couplings in the MSSM

Mathias Brucherseifer mathias.brucherseifer@psi.ch

ETH Zürich / PSI Villigen

PhD seminar 2011

in collaboration with M. Spira

Mathias Brucherseifer Higgs Self-Couplings in the MSSM

< ロ > < 同 > < 回 > < 回 > < □ > <

э

Motivations for the MSSM

2 The Higgs Sector in the MSSM

4 Radiative Corrections to Higgs Self-Couplings

< ロ > < 同 > < 回 > < 回 >

Hierarchy Problem in the Standard Model

Embedding the SM in a grand unified theory (GUT) \rightarrow introduce UV cutoff Λ

 Loop corrections to the Higgs mass generate quadratic divergence:

$$\Delta m_H^2 \sim \Lambda^2 \sim \mathcal{O}(M_{GUT}) \gg m_H^2$$

absorb in counterterm: $m_{H}^{2}
ightarrow m_{H}^{2} + \Delta m_{H}^{2} - \delta m_{H}^{2}$

 \Rightarrow unnatural fine tuning \sim 28 digits

ヘロマ ふぼ マイロマ

Motivations for the MSSM

- Supersymmetry: fermions ↔ bosons
- Quadratic divergencies are cancelled:

 $\Delta m_H^2 \sim (\tilde{m}^2 - m^2) \log \frac{\Lambda^2}{m^2} \Rightarrow$ no fine-tuning for $\tilde{m} \lesssim \mathcal{O}(1 \, \text{TeV})$

\Rightarrow Hierarchy problem solved

• SUSY-SU(5)-GUT predicts: $\sin^2 \Theta_W = 0.2334 \pm 0.0026$ LEP measures: $\sin^2 \Theta_W = 0.2317 \pm 0.0002$

Electro Weak Symmetry Breaking in the MSSM

Two complex Higgs doublets: H_1 , H_2

 \rightarrow 8 degrees of freedom (DoF)

Longitudinal polarizations of the W^{\pm} and Z bosons eat 3 DoF:

\Rightarrow 5 physical Higgs bosons

- 2 scalar Higgs bosons h, H
- 1 pseudoscalar Higgs boson A
- 2 charged Higgs bosons H⁺, H⁻

< ロ > < 同 > < 回 > < 回 > < □ > <

Electro Weak Symmetry Breaking in the MSSM

Two complex Higgs doublets: H_1 , H_2

ightarrow 8 degrees of freedom (DoF)

Longitudinal polarizations of the W^{\pm} and Z bosons eat 3 DoF:

 \Rightarrow 5 physical Higgs bosons

- 2 scalar Higgs bosons *h*, *H*
- I pseudoscalar Higgs boson A
- 2 charged Higgs bosons H⁺, H⁻

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Higgs Boson Masses in the MSSM at Tree Level

The MSSM Higgs potential is

$$egin{aligned} V_0 = & (m_1^2+\mu^2)|H_1|^2+(m_2^2+\mu^2)|H_2|^2-B\mu\epsilon_{ij}(H_1^jH_2^j+h.c.)+ \ &+ & rac{g^2+g'^2}{8}(|H_1|^2-|H_2|^2)^2+rac{g^2}{2}|H_1^\dagger H_2|^2. \end{aligned}$$

diagonalize mass matrix \rightarrow physical Higgs boson masses

$$m_{H^{\pm}}^{2} = m_{A}^{2} + m_{W}^{2} \qquad m_{A}^{2} = \frac{2B\mu}{\sin(2\beta)}$$
$$m_{H,h}^{2} = \frac{1}{2} \left[m_{A}^{2} + m_{Z}^{2} \pm \sqrt{(m_{A}^{2} + m_{Z}^{2})^{2} - 4m_{A}^{2}m_{Z}^{2}\cos^{2}(2\beta))} \right]$$

 $\Rightarrow m_h < m_Z$

ヘロト 人間 ト イヨト イヨト

э

One-Loop Corrections to Higgs Masses

Top-Yukawa-coupling h_t is large

 \rightarrow get large corrections from top/stop loops $\mathcal{O}(\alpha_t)$, $\alpha_t = \frac{h_t^2}{4\pi}$:

$$m_{h}^{2} \leq m_{Z}^{2} + \frac{3G_{F}}{\sqrt{2}\pi^{2}} \frac{m_{t}^{4}}{\sin^{2}(\beta)} \left[\log \frac{m_{\tilde{t}_{1}}m_{\tilde{t}_{2}}}{m_{t}^{2}} + \frac{\chi_{t}^{2}}{M_{SUSY}^{2}} \left(1 - \frac{\chi_{t}^{2}}{12M_{SUSY}^{2}} \right) \right]$$

 $X_t = A_t - \mu \cot(\beta)$ Ellis, · · · (1991) Haber, · · · (1990) etc.

 \Rightarrow m_h is easily pushed beyond m_Z bound =

Further Corrections to Higgs Masses

• QCD corrections are dominant at two-loop: $\mathcal{O}(\alpha_t \alpha_s)$

Hempfling,Hoang (1994) Heinemeyer,··· (1998) Zhang (1999) Slavich,··· (2001) etc.

• $\mathcal{O}(\alpha_t^2)$, $\mathcal{O}(\alpha_b \alpha_s)$ have been calculated.

Espinosa, Zhang (2000) Slavich,··· (2001) Heynemeyer,··· (2005) etc.

• First 3-loop results: $O(\alpha_t \alpha_s^2)$

Martin (2007) Harlander, · · · (2010)

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

 $\Rightarrow m_h \lesssim 135 \text{ GeV}$

Higgs couplings to SM particles

Modified couplings (tree level):

ϕ	$oldsymbol{g}^{\phi}_{u}$	$oldsymbol{g}^{\phi}_{oldsymbol{d}}$	${oldsymbol g}_V^\phi$
H _{SM}	1	1	1
h	$\cos(\alpha)/\sin(\beta)$	$-\sin(lpha)/\cos(eta)$	$\sin(\beta - \alpha)$
Н	$\sin(lpha)/\sin(eta)$	$\cos(lpha)/\cos(eta)$	$\cos(\beta - \alpha)$
Α	$\tan^{-1}(\beta)$	$tan(\beta)$	0

mixing angle
$$\alpha$$
: $\begin{pmatrix} h \\ H \end{pmatrix} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} \begin{pmatrix} H_1^0 \\ H_2^0 \end{pmatrix}$

$$t_{\beta}\uparrow \Rightarrow g_{u}^{\phi}\downarrow g_{d}^{\phi}\uparrow$$

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → …

3

Higgs Boson Decay

• low $tan(\beta)$

$$\begin{array}{ll} \text{mainly:} & h \to \tau^+ \tau^- / b \bar{b} \\ \text{large } m_h: & h \to g g / \gamma \gamma / W W / Z Z \\ \text{low } m_A: & H, A \to \tau^+ \tau^- / b \bar{b} \\ \text{large } m_A: & H, A \to t \bar{t} & H \to W W / Z Z / h h / \tilde{f} \tilde{f} & A \to Z h \end{array}$$

• large $tan(\beta)$

$$h, H, A \rightarrow \tau^+ \tau^- / [\mu^+ \mu^-]$$
 $h, H, A \rightarrow b\bar{b}$

▲日 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ →

æ

Higgs Production at LEP

• Higgs-strahlung and pair production

Fusion process

ъ

Higgs Production at LEP

• Higgs-strahlung and pair production

Fusion process

 $tan(\beta) \uparrow$

Motivations for the MSSM The Higgs Sector in the MSSM

MSSM Higgs search

Radiative Corrections to Higgs Self-Couplings Summary

Exclusion Limits from LEP

 $E_{CMS} = 209 \text{ GeV}$

- *m_A* < 93.4 GeV and *m_{h,H}* < 92.8 GeV excluded
- 0.7 < tan(β) < 2.4 excluded

A linear collider with $E_{CMS} \gtrsim 250 \text{ GeV}$ could access the whole parameter space.

< ロ > < 同 > < 回 > < 回 >

Motivations for the MSSM The Higgs Sector in the MSSM MSSM Higgs search

Radiative Corrections to Higgs Self-Couplings Summary

Higgs Production at the LHC

Gluon fusion

Higgs bremsstrahlung off bottom quarks

ъ

Motivations for the MSSM The Higgs Sector in the MSSM MSSM Higgs search

Radiative Corrections to Higgs Self-Couplings Summary

Higgs Production at the LHC

Gluon fusion

Higgs bremsstrahlung off bottom quarks

Motivations for the MSSM The Higgs Sector in the MSSM MSSM Higgs search

Radiative Corrections to Higgs Self-Couplings Summary

Exclusion Limits from the LHC

Cross section is enhanced for • large $tan(\beta)$ • low m_A High m_A and moderate $tan(\beta) \rightarrow h = H_{SM}$ \Rightarrow hard to detect because of huge $b\bar{b}$ background

< □ > < 同 > < 回 > <

Motivation for Calculating Two-Loop Corrections to the Couplings

- Higgs self-couplings determine Higgs potential
- Higgs potential is responsible for Electro Weak Symmetry Breaking (EWSB)

 \Rightarrow need to measure Higgs self-interactions to understand EWSB

(very difficult at LHC, linear collider needed)

< ロ > < 同 > < 回 > < 回 > .

 \Rightarrow need high-precision predictions for trilinear couplings

Existing One-Loop Calculation

$$\lambda_{hhh}^{tree} = rac{3m_Z^2}{v}c_{2lpha}s_{lpha+eta}$$

- large corrections
- sizable uncertainties
- \Rightarrow two-loop calculation needed.

< ロ > < 同 > < 回 > < 回 >

Effective Potential Method

Effective Potential V^{eff}:

- Non-derivative part of the effective action
 → correct in the limit of vanishing external momenta
- Generating functional of 1PI Greens functions with no external legs (vacuum diagrams)
- *n*-th derivative of V^{eff}: sum of all 1PI diagrams with *n* external legs

$$\Rightarrow \lambda(h_1, h_2, h_3) = \left. \frac{\partial^3 V^{\text{eff}}}{\partial h_1 \partial h_2 \partial h_3} \right|_{min}$$

< ロ > < 同 > < 回 > < 回 > .

Computing the Effective Potential

First step: calculate ΔV^{α_t} and $\Delta V^{\alpha_t \alpha_s}$

Renormalization

The fully renormalized coupling can be calculated by

$$\lambda_{\alpha_t \alpha_s}(h_1, h_2, h_3) = \left. \frac{\partial^3 (V_0 + \Delta V^{\alpha_t} + \Delta V^{\alpha_t \alpha_s})}{\partial h_1 \partial h_2 \partial h_3} \right|_{min} + \frac{\delta \lambda_{CT}}{\partial h_1 \partial h_2 \partial h_3}$$

The counterterm is obtained from derivatives

$$\delta\lambda_{CT}^{(2)} = \sum_{i} \frac{\partial \Delta \lambda_{1}}{\partial \mathbf{x}_{i}} \delta \mathbf{x}_{i},$$

where $x_i = \left\{ m_t^2, m_{\tilde{t}_1}^2, m_{\tilde{t}_2}^2, A_t \right\}$ are all parameters of the one-loop couplings that are renormalized at $\mathcal{O}(\alpha_s)$.

・ロト ・ 同ト ・ モト ・ モト

Cancellation of Divergences

For simplicity, start with \overline{DR} -scheme:

- \overline{DR} -counterterms $\delta^{\overline{DR}}$ are $\frac{1}{\epsilon}$ -divergences
- $\mathcal{O}(\epsilon)$ -terms in $\Delta V_1^{\alpha_t}$ give finite contributions
- $\mathcal{O}(\epsilon^0)$ -terms in $\Delta V_1^{\alpha_t}$ give $\frac{1}{\epsilon}$ poles

Non-trivial consistency check: All $\frac{1}{\epsilon^2}$ and $\frac{1}{\epsilon}$ poles cancel.

 $\Rightarrow \lambda_{\alpha_t \alpha_s}$ is finite

< ロ > < 同 > < 回 > < 回 > .

Renormalization Scheme

Can shift to any other scheme by adding finite counterterm. e.g. on-shell-scheme:

$$\lambda_{\alpha_t \alpha_s}^{OS} = \lambda_{\alpha_t \alpha_s}^{\overline{DR}} + \Delta \lambda_{CT}^{OS}$$

•
$$\Delta \lambda_{CT}^{OS} = \sum_{i} \frac{\partial \Delta \lambda_{1}}{\partial x_{i}} \Delta^{OS} x_{i}$$

• $\Delta^{OS} x_{i}$: finite part of on-shell counterterm

 $\Rightarrow \lambda_{\alpha_t \alpha_s}^{OS}$ is independent of the 't Hooft scale Q.

ヘロト 人間 ト イヨト イヨト

э

Results: hhh

- The effective potential method provides an efficient way to calculate two-loop corrections to Higgs self-interactions.
- The $\mathcal{O}(\alpha_t \alpha_s)$ corrections to the hhh-coupling are small at the central scale $M_{SUSY}/2$ and the theoretical uncertainty is reduced from ~ 15% to ~ 2%.

 \Rightarrow stabilization

• Outlook:

.

- quartic couplings \rightarrow done \checkmark
- $\mathcal{O}(\alpha_t^2)$ corrections \rightarrow in progress
- analytic formulae, public code

< ロ > < 同 > < 回 > < 回 > .

Results: hhH

Results: hHH

Results: HHH

Results: hAA

Results: HAA

Results: hhh

