

b-baryon searches at the CMS experiment

Mirena Ivova University of Zurich

PhD students seminar Zurich, 30.08.2011

Outline

★ Introduction - why *b*-baryons?

- **★** Search of Λ_b and charged Σ_b at CMS
 - what is known
 - event selection
 - results with 2011 data
- **★** Summary, ongoing and plans

Heavy baryons

- ★ From the quark model (with *u,d,s,c,b* quarks):
 - 75 (ground state) baryons expected
- **★** "Heavy" baryons: contain *c*(charm) or *b*(beauty) quark
 - 56 heavy baryons expected
 - Observed baryons with *c* quark: 15
 - Observed baryons with a *b* quark: 8
- ★ Why *b*-baryons at CMS?
 - $b \rightarrow c \Rightarrow$ decays to J/ $\psi(\mu\mu) \Rightarrow$ suitable to trigger on
 - decays to (long-lived) hyperons => secondary (displaced) vertices

SU(4) with four quarks: *u,d,s,b* Only 8 baryons with *b*-quarks have been observed.³

- Evidence often rests on a small number of events
- Most of the predicted ground states are still to be discovered

In this talk

I) $\Lambda_b(udb)$

II) $\Sigma_b^{(*)+}(uub), \ \Sigma_b^{(*)-}(ddb)$

$$\Lambda_b \to J/\psi \Lambda$$

$$\downarrow \hspace{1cm} \downarrow \hspace{1cm} \Lambda \to p\pi$$

$$\downarrow \hspace{1cm} J/\psi \to \mu\mu$$

$$\Sigma_b^{(*)\pm} \to \Lambda_b \pi^{\pm}$$

Processed data: p-p collisions, $\sqrt{s} = 7$ TeV $L \approx 2 \text{ fb}^{-1}$

What is known about charged Σ_b

Four charged states observed so far:

$$\Sigma_b^{(*)+} \text{ (uub)} \to \Lambda_b^0 \pi^+$$
$$\Sigma_b^{(*)-} \text{ (ddb)} \to \Lambda_b^0 \pi^-$$

Theoretical expectations:

Σ_b property	Expected value (MeV/ c^2)
$m(\Sigma_b) - m(\Lambda_b^0)$	180 - 210
$m(\Sigma_b^*) - m(\Sigma_b)$	10 - 40
$m(\Sigma_h^{-}) - m(\Sigma_h^{+})$	5 - 7
$\Gamma(\Sigma_b), \Gamma(\Sigma_b^*)$	$\sim 8, \sim 15$

Σ_b search at CMS

Search for the decays:

$$\Sigma_{b}^{(*)\pm} \to \Lambda_{b}\pi^{\pm}$$

$$\Lambda_{b} \to J/\psi\Lambda$$

$$\downarrow \Lambda \to p\pi$$

$$\downarrow J/\psi \to \mu\mu$$

Remarks:

- Σ_b decays strongly
 - => decay takes place at the primary vertex
- pion from Σ_b is soft
 - => need to distinguish among tens of other (higher energy) pions

First, start with Λ_b ...

$\Lambda_b \to J/\psi \Lambda$

Why this decay channel?

- two muons to trigger on
- two displaced vertices

From PDG:

 $M_{PDG}(\Lambda_b) = 5620.2(1.6) \text{ MeV/c}^2$ $c\tau(\Lambda_b) = 415\mu\text{m}$

What do I want to measure with Λ_b ?

- Σ_b cross-section relative to Λ_b
- Λ_b polarization
 - test for heavy quark factorization and PQCD models
 - how do heavy quarks hadronize?
 - is polarization preserved?

J/ψ and Λ selection

J/ψ selection:

- $p_T(\mu+,\mu-) > 3.5 \text{ GeV/c}$
- $p_T(J/\psi) > 7 \text{ GeV/c}$
- vertex probability $(J/\psi) > 10\%$ (Kalman fit)
- J/ ψ mass: m_{PDG} ± 150 MeV/c²

2) A selection:

- $p_T(p) > 1 \text{ GeV/c}$
- $p_T(\pi) > 0.3 \text{ GeV/c}$
- $p_T(\Lambda) > 1.3 \text{ GeV/c}$
- $c\tau_{xy}(\Lambda) > 0.5$ cm
- pointing angle w.r.t. J/ ψ vertex, $\cos\theta(\Lambda) > 0.99$
- vertex probability (Λ) > 2% (Kalman fit)
- Λ mass: $m_{PDG} \pm 9 \text{ MeV/c}^2$

Λ_b selection

3) Λ_b selection:

- $p_T(\Lambda_b) > 8.5 \text{ GeV/c}$
- $c\tau_{xy}(\Lambda_b) > 30 \ \mu m$
- pointing angle w.r.t. PV $\cos\theta(\Lambda_b) > 0.9$
- vertex probability (Λ_b) > 1% (kinematic fit with J/ψ mass constrain)

example distribution of reconstructed Λ_b signal:

Primary vertex selection ~ 6 pile-up events (=> primary vertices) on average per event PV chosen from best (smallest) Λ_b pointing angle PV chosen from best (smallest) PV chosen from best (smallest)<

Σ_b selection

Challenges:

- soft (low energy) pion coming from PV
- huge combinatorial background

Many requirements to assure that:

- selected pion is from same PV as Λ_b
- **\Sigma_b and soft** $\pi_{\Sigma b}$ selection:
 - Λ_b mass: $m_{PDG} \pm 45$ MeV/c²
 - $p_T(\pi_{\Sigma b}) > 0.3 \text{ GeV/c}$
 - $(\pi_{\Sigma b}, \Lambda_b)$ distance of closest approach < 0.2 cm
 - $\pi_{\Sigma b}$ impact parameters in 3D < 0.3 cm
 - $\pi_{\Sigma b}$ impact parameters in 3D significance < 3
 - Δ (point of cl.appr.($\pi_{\Sigma b}$, Λ_b), PV) < 1 cm
 - $\Delta R(\pi_{\Sigma b}, \Lambda_b)$ in $(\eta, \phi) < 1$
 - # valid pixel hits $(\pi_{\Sigma b}) \ge 2$
 - # valid hits $(\pi_{\Sigma b}) \ge 5$
 - $\chi^2/NDF(\pi_{\Sigma b}) < 2$
 - $p_T(\Sigma_b) > 8.5 \text{ GeV/c}$

track quality requirements

assure π_{Σb}
compatibility
with PV and Λ_b

Preliminary results: $\Sigma_b^{(*)+}$

Expected signal region $Q \in (0.03, 0.1)$ GeV/c²

- Significant excess of events in signal region
- Clear hints of two states

Preliminary results: $\Sigma_b^{(*)-}$

Expected signal region $Q \in (0.03, 0.1)$ GeV/c²

• More statistics needed

Preliminary results: + and - together

Expected signal region $Q \in (0.03, 0.1)$ GeV/c²

• Significant excess of events in signal region

Summary, ongoing and plans

★ So far observed:

- clean signal of Λ_b
- hints of charged Σ_b states

★ Ongoing and plans:

- angular analysis of Λ_{b} , polarization studies
- measurement Σ_b cross-section relative to Λ_b

Thank you for your attention!

