$\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \varphi \rightarrow \mu^{-} \mu^{+} \mathrm{K}-\mathrm{K}^{+}$lifetime Bárbara Millán Mejías

Zürich University

PhD seminar,

August 30th, 2011

Agenda

- Introduction
- B_{s} meson oscillation
- CMS Experiment

- Event reconstruction $\mathrm{J} / \psi \varphi \rightarrow \mu^{-} \mu^{+} \mathrm{K}^{-} \mathrm{K}^{+}$
- Results \& expectations with 2011 Data
- Conclusion

Why B_{s} meson?

- Accuracy studies
- This decay provides one of the best ways to determine the height of the unitarity triangle

B_{s} meson oscillation

- Oscillation frequency is given by $\Delta m=m_{s}^{H}-m_{s}^{L}$
- 2 CP eigen-states $\mathrm{B}_{\mathrm{s}} \mathrm{B}_{\mathrm{s}}$ with different life times $\Delta \Gamma=\Gamma_{s}^{H}-\Gamma_{s}^{L}$

$$
P(t)=\frac{e^{-\Gamma t}}{2}\left[\cosh \left(\frac{\Delta \Gamma t}{2}\right)\right]+(-) \cos (\Delta m t)
$$

B_{s} meson oscillation

Oscillation frequency is given by 2 CP eigen-states $\mathrm{B}_{\mathrm{s}} \mathrm{B}_{\mathrm{s}}$ with different life times

$$
\Delta \Gamma=\Gamma_{s}^{H}-\Gamma_{s}^{L}
$$

- Interference of both decays involves CP violating phase Φ_{s}
- Φ_{s} expected to be small in the $\mathrm{SM}(\approx-0.04)$
- Large observed $\Phi_{\mathrm{s}}=$ new physics

LHCb Preliminary
$\phi_{\mathrm{s}}=0.03 \pm 0.16 \pm 0.07 \mathrm{rad}$

- b - factories run below threshold of B_{s} production, best result from B_{s} mixing come from Tevatron (last Saturday were released latest LHCb results)

Characteristic signal with untagged analysis

What can be observed:
Angular correlations
What I want to measure:
CP even/odd eigenstate
$\Delta \Gamma_{\mathrm{s}}$
Assumed $\Phi_{\mathrm{s}}=0$

Decay rate

$$
\frac{\mathrm{d}^{4} \Gamma\left(B_{s}(t)\right)}{\mathrm{d} \boldsymbol{\mathrm { d } t}}=f(\boldsymbol{\Theta}, \alpha, t)=\sum_{i=1}^{6} o_{i}(\alpha, t) \cdot g_{i}(\boldsymbol{\Theta}),
$$

Physical angles defined to describe the decay
α =physical parameters like decay time, difference decay time, and ϕ_{s}
$\Theta=$ three angles defined by the decay

Theory

Differential decay rate:

$$
\frac{\mathrm{d}^{4} \Gamma\left(B_{s}(t)\right)}{\mathrm{d} \boldsymbol{\Theta} \mathrm{~d} t}=f(\boldsymbol{\Theta}, \alpha, t)=\sum_{i=1}^{6} O_{i}(\alpha, t) \cdot g_{i}(\boldsymbol{\Theta})
$$

$\Theta \equiv(\cos \vartheta, \phi, \cos \psi)$
$\alpha \equiv$ physical parameters

$$
\begin{aligned}
\hline O_{1} & =\left|A_{0}(t)\right|^{2} \\
& =\left|A_{0}(0)\right|^{2}\left[e^{-\Gamma_{L} t}+e^{-\Gamma_{H} t}-\left|\cos \phi_{s}\right|\left(e^{-\Gamma_{H} t}-e^{-\Gamma_{L} t}\right)\right], \\
O_{2} & =\left|A_{\|}(t)\right|^{2} \\
& =\left|A_{\|}(0)\right|^{2}\left[e^{-\Gamma_{L} t}+e^{-\Gamma_{H} t}-\left|\cos \phi_{s}\right|\left(e^{-\Gamma_{H} t}-e^{-\Gamma_{L} t}\right)\right], \\
O_{3} & =\left|A_{\perp}(t)\right|^{2} \\
& =\left|A_{\perp}(0)\right|^{2}\left[e^{-\Gamma_{L} t}+e^{-\Gamma_{H} t}+\left|\cos \phi_{s}\right|\left(e^{-\Gamma_{H} t}-e^{-\Gamma_{L} t}\right)\right], \\
O_{4} & =\mathscr{I} m\left(A_{\|}^{*}(t) A_{\perp}(t)\right) \\
& =-\left|A_{\|}(0)\right|\left|A_{\perp}(0)\right| \cos \left(\delta_{1}\right) \sin \phi_{s}\left(e^{-\Gamma_{H} t}-e^{-\Gamma_{L} t}\right), \\
O_{5} & =\mathscr{R} e\left(A_{0}^{*}(t) A_{\|}(t)\right) \\
& =\left|A_{0}(0)\right|\left|A_{\|}(0)\right| \cos \left(\delta_{2}-\delta_{1}\right)\left[e^{-\Gamma_{L} t}+e^{-\Gamma_{H} t}-\left|\cos \phi_{s}\right|\left(e^{-\Gamma_{H} t}-e^{-\Gamma_{L} t}\right)\right] \\
O_{6} & =\mathscr{I} m\left(A_{0}^{*}(t) A_{\perp}(t)\right) \\
& =-\left|A_{0}(0)\right|\left|A_{\perp}(0)\right| \cos \left(\delta_{2}\right) \sin \phi_{s}\left(e^{-\Gamma_{H} t}-e^{-\Gamma_{L} t}\right) .
\end{aligned}
$$

Individual angular distributions

$$
\begin{aligned}
& g_{1}=2 \cos ^{2} \psi\left(1-\sin ^{2} \theta \cos ^{2} \varphi\right) \\
& g_{2}=\sin ^{2} \psi\left(1-\sin ^{2} \theta \sin ^{2} \varphi\right) \\
& g_{3}=\sin ^{2} \psi \sin ^{2} \theta \\
& g_{4}=\sin ^{2} \psi \sin 2 \theta \sin \varphi \\
& g_{5}=1 / \sqrt{2} \sin 2 \psi \sin ^{2} \theta \sin 2 \varphi \\
& g_{6}=1 / \sqrt{2} \sin 2 \psi \sin 2 \theta \cos \varphi
\end{aligned}
$$

$\left|A_{0}\right|^{2}+\left|A_{\perp}\right|^{2}+\left|A_{\|}\right|^{2}=1$

Fit in 4-Dimensions assuming $\phi_{\mathrm{s}}=0$

Theoretical projections

$P=(\epsilon(\mathrm{t}) . \epsilon(\Theta) \cdot f(\Theta, \alpha, \mathrm{t})) \otimes G\left(t, 0, \sigma_{t}\right)$

$\Theta \equiv(\cos \vartheta, \varphi, \cos \psi)$
$\alpha \equiv$ physical parameters
$\mathrm{G} \equiv$ Gaussian resolution function
B. Millán Mejías 20II,8,30

$$
\begin{aligned}
& \epsilon(\Theta) \equiv \text { angular distribution efficiency } \\
& \epsilon(T) \equiv \text { time efficiency }
\end{aligned}
$$

CMS

Components:

- Inner tracker detector:

Silicon Pixel tracker and silicon strip tracker

- Energy measurements:

Electromagnetic calorimeter
Hadron calorimeter

Superconducting solenoid (3.8 T)

Muon chamber with iron return yoke

B_{s} selection cuts

CMs

- Muons selection:
- $\mathrm{P}_{\mathrm{T}}(\mu)>3.5 \mathrm{GeV} / \mathrm{c}$
- |J/ $\Psi^{\text {mass }-J / ~} \Psi^{\text {nominal }} \mid<150 \mathrm{MeV} / \mathrm{c}^{2}$
- J/ Ψ candidate with $\mathrm{P}_{\mathrm{T}}(\mathrm{J} / \Psi)>7 \mathrm{GeV} / \mathrm{c}$
- Kinematic fit and J/ Ψ constraint
- B_{s} Vertex Probability $>2 \%$
- Both $P_{T}(K)>0.7 \mathrm{GeV} / \mathrm{c}$

- $5.20 \mathrm{MeV} / \mathrm{c}^{2}<$ Mass $\left(\mathrm{B}_{\mathrm{s}}\right)<5.65 \mathrm{MeV} / \mathrm{c}^{2}$
- $\mathrm{P}_{\mathrm{T}}(\mathrm{Bs})>8 \mathrm{GeV} / \mathrm{c}$

4-D ML fit assuming $\Phi_{\mathrm{s}}=0$

DATA

B_{s} mass and decay length time

B. Millán Mejías 201I,8,30

B_{s} mass candidates

$\mathrm{B}_{\mathrm{s}} \mathrm{ct} / \sigma_{\mathrm{ct}}>5$

Fit in the signal region $5.30<$ BsMass <5.43 $\mathrm{PDF}_{\text {total }}=\left(\mathrm{PDF}_{\text {sB }}\right)+\left(f(\Theta, \alpha, \mathrm{t}) \otimes G\left(t, \mathrm{o}_{\mathrm{t}}\right)\right)$

```
- Fit
-CP Even component - CP Odd component
```

4-Dimension ML fit assuming $\Phi_{\mathrm{s}}=0$

CMS work in progress

B. Millán Mejías 20II,8,30

16
PhD seminar, Zurich

Summary

- Working on measurement of $\Delta \Gamma$
- Working on trigger acceptance
- Expecting final result at the end of 2011 with full statistics
- Exciting times ahead, new physics WHERE???

CMIS \cdots

Thanks!

