

Laser Spectroscopy of radioactive isotopes in an MR-ToF Device

Anthony Roitman

McGill University/CERN

July 2, 2024

Anthony Roitman (McGill University/CERN)

July 2, 2024 1 / 25

< 1 k

Outline - In two parts

- Motivation
- the MIRACLS technique

< 1 k

Motivation

In a nutshell

• Search for more sensitive methods to benchmark nuclear theory.

Image: A matrix and a matrix

Nuclear Shell Model

 Nucleons are organized into shells, with increased stability at shell closures corresponding to magic numbers.

Nuclear Shell Model

- Nucleons are organized into shells, with increased stability at shell closures corresponding to magic numbers.
- Reflected in many observables, such as binding energy, or charge radius.

Nuclear Shell Model

- Nucleons are organized into shells, with increased stability at shell closures corresponding to magic numbers.
- Reflected in many observables, such as binding energy, or charge radius.
- Highly effective at describing stable isotopes

Islands of Inversion

• N = 20 shell closure disappears, and isotopes have decreased stability due to "intruder states"

э

(日)

Islands of Inversion

- *N* = 20 shell closure disappears, and isotopes have decreased stability due to "intruder states"
- highly interesting for nuclear theory.

< A > <

Islands of Inversion - Magnesium

• N = 20 island of inversion is observed in charge radii of Mg isotopes.

Figure: D. T. Yordanov, et al., Phys. Rev. Lett., 108:042504, (2012)

Ab-initio method

• Ab-initio methods - progress in modeling Mg charge radius.

• ²⁰Mg has a different predicted charge radius in the two models above.

 $\bullet\,$ We want to measure the charge radii of exotic magnesium isotopes, such as $^{34}Mg,\,^{33}Mg$ and $^{20}Mg.$

< 4 ₽ × <

- We want to measure the charge radii of exotic magnesium isotopes, such as ³⁴Mg, ³³Mg and ²⁰Mg.
- These are very rare and short-lived isotopes need techniques such as laser spectroscopy to probe them.

What is Collinear Laser Spectroscopy?

By probing an atom's electronic structure, we can determine the properties of its nucleus, such as:

nuclear spin

• electromagnetic moments

• charge radii

Many observables become accessible with only one measurement!

Conventional fluorescence-based CLS

э

A D N A B N A B N A B N

Our method: MIRACLS

• signal-to-noise ratio improvement: $\frac{S}{N} = \frac{S_0}{N_0}\sqrt{r}$.

July 2, 2024 11 / 25

3

イロト 不得 トイヨト イヨト

Our method: MIRACLS

- signal-to-noise ratio improvement: $\frac{S}{N} = \frac{S_0}{N_0}\sqrt{r}$.
- More exotic radionuclides with low production yields can be probed.

MIRACLS method

Paul Trap injection: (show animation)

2

MIRACLS method

Paul Trap extraction: (show animation)

イロト イヨト イヨト

э

MIRACLS method

CLS in MR-ToF Device: (show animation)

イロト イヨト イヨト イヨト

2

• Single-passage mode:

Collinear-Anticollinear measurements

• Collinear:

$$\nu_0 = \nu_c \frac{1-\beta}{\sqrt{1-\beta^2}}$$

• Anticollinear:

$$\nu_0 = \nu_{\textit{a}} \frac{1+\beta}{\sqrt{1-\beta^2}}$$

э

Image: A matrix

Collinear-Anticollinear measurements

• Collinear:

$$\nu_0 = \nu_c \frac{1-\beta}{\sqrt{1-\beta^2}}$$

• Anticollinear:

$$\begin{split} \nu_0 &= \nu_a \frac{1+\beta}{\sqrt{1-\beta^2}} \\ \Rightarrow \nu_0 &= \sqrt{\nu_a \cdot \nu_c} \end{split}$$

э

Image: A matrix

Collinear-Anticollinear measurements

Collinear:

$$\nu_0 = \nu_c \frac{1-\beta}{\sqrt{1-\beta^2}}$$

• Anticollinear:

$$\begin{split} \nu_0 &= \nu_{\text{a}} \frac{1+\beta}{\sqrt{1-\beta^2}} \\ \Rightarrow \nu_0 &= \sqrt{\nu_{\text{a}}\cdot\nu_{\text{c}}} \end{split}$$

 $\bullet\,$ Removes the need for knowing beam energy for the determination of ν_0

• Due to a high beam energy (> 10 keV), MIRACLS can be used as a high-resolution, high flux mass separator

< A > <

 $\bullet\,$ Due to a high beam energy (> 10keV), MIRACLS can be used as a high-resolution, high flux mass separator

 $\mathsf{flux} = \frac{\mathsf{number of ions in trap}}{\mathsf{separation time}}$

 $\bullet\,$ Due to a high beam energy (> 10keV), MIRACLS can be used as a high-resolution, high flux mass separator

$$\mathsf{flux} = \frac{\mathsf{number of ions in trap}}{\mathsf{separation time}}$$

- For higher energies:
 - number of ions stored can increase because of reduced space charge effects.
 - \blacktriangleright bunches with smaller time spread can be accepted into MR-ToF \Rightarrow shorter separation time.

Figure: F.M. Maier, NIM A, 1056, 168545, (2023)

• 10^5 ions/s with mass resolving power $R = 10^5$ at 30 keV beam energy.

Anthony Roitman (McGill University/CERN)		July 2, 2024	18 / 25

Figure: F.M. Maier, NIM A, 1056, 168545, (2023)

- 10^5 ions/s with mass resolving power $R = 10^5$ at 30 keV beam energy.
- Plans for a general purpose mass sepator at ISOLDE.
 - Needs to be upgraded with shorter drift tube (currently $R = 10^4$)

Beamtime conducted on June 30th, (2 days ago)

Image: A matrix and a matrix

Beamtime: Isotope shift measurements

Figure: Preliminary

 Measured the collinear and anticollinear D1 and D2 transitions for even magnesium isotopes ^{24–32}Mg.

Anthony Roitman (McGill University/CERN)

Beamtime: Isotope shift measurements isotope shift for D1 line (Already measured in 2013 at COLLAPS)

Figure: Preliminary.

COLLAPS: D. T. Yordanov, et al., Phys. Rev. Lett., 108:042504, (2012) Stable Mg: V. Batteiger, et al., Phys. Rev. A, 80:022503, (2009)

→ ∃ →

< 3 >

< 1 k

Beamtime: Isotope shift measurements isotope shift for D2 line (New measurement!)

Figure: Preliminary.

COLLAPS: D. T. Yordanov, et al., Phys. Rev. Lett., 108:042504, (2012) Stable Mg: V. Batteiger, et al., Phys. Rev. A, 80:022503, (2009)

4 1 1

-

< 1 k

Sensitivity limit: 28 ions / cycle

- A measurement taken with equivalent of 12 hours with ISOLDE beam.
- 34 Mg achievable next beamtime (150 ions / μ C)

Plans for next beamtime

• Add more PMTs for photon detection (currently 3, we have room for 6)

Image: A matrix

Plans for next beamtime

- Add more PMTs for photon detection (currently 3, we have room for 6)
- Reduce stray light (currently around 200kHz at 0.5 mW laser power)

Plans for next beamtime

- Add more PMTs for photon detection (currently 3, we have room for 6)
- Reduce stray light (currently around 200kHz at 0.5 mW laser power)
- Add another laser for easier swap between anti-collinear and collinear geometries.

• MIRACLS experiment is fully operational

Image: A matrix and a matrix

2

- MIRACLS experiment is fully operational
- successful measurements using collinear and anticollinear CLS of short-lived ^{28,30,32}Mg and stable ^{24,26}Mg for D1 and D2 transitions.

- MIRACLS experiment is fully operational
- successful measurements using collinear and anticollinear CLS of short-lived ^{28,30,32}Mg and stable ^{24,26}Mg for D1 and D2 transitions.
- $\bullet~\mbox{CLS}$ sensitivity with 30 ions / measurement cycle demonstrated

- MIRACLS experiment is fully operational
- successful measurements using collinear and anticollinear CLS of short-lived ^{28,30,32}Mg and stable ^{24,26}Mg for D1 and D2 transitions.
- CLS sensitivity with 30 ions / measurement cycle demonstrated
- mass resolving power of 10^4 achieved (in non-optimized setup)

- MIRACLS experiment is fully operational
- successful measurements using collinear and anticollinear CLS of short-lived ^{28,30,32}Mg and stable ^{24,26}Mg for D1 and D2 transitions.
- CLS sensitivity with 30 ions / measurement cycle demonstrated
- mass resolving power of 10⁴ achieved (in non-optimized setup)
- ³⁴Mg measurement within sights for beamtime later this year.

Questions?

2

イロト イヨト イヨト イヨト