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Qutline - In two parts

Q Intro to MIRACLS
@ Motivation

o the MIRACLS technique

© The latest beamtime results
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Motivation

In a nutshell

@ Search for more sensitive methods to benchmark nuclear theory.
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Nuclear Shell Model

@ Nucleons are organized into shells, with increased stability at shell

closures corresponding to magic numbers.
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Nuclear Shell Model

@ Nucleons are organized into shells, with increased stability at shell
closures corresponding to magic numbers.

o Reflected in many observables, such as binding energy, or charge

radius.
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Nuclear Shell Model
@ Nucleons are organized into shells, with increased stability at shell
closures corresponding to magic numbers.

o Reflected in many observables, such as binding energy, or charge
radius.

@ Highly effective at describing stable isotopes
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Islands of Inversion

@ N = 20 shell closure disappears, and isotopes have decreased stability
due to “intruder states”

—_—

=

1

1

I

Uy N

island of
T T T T T

16 20 inversion

—sd n —pf I:‘ — mixed sd—pf

Anthony Roitman (McGill University/CERN) July 2, 2024 5/25



Islands of Inversion

@ N = 20 shell closure disappears, and isotopes have decreased stability
due to “intruder states”

@ highly interesting for nuclear theory.
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Islands of Inversion - Magnesium

e N = 20 island of inversion is observed in charge radii of Mg isotopes.
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Ab-initio method

@ Ab-initio methods — progress in modeling Mg charge radius.

= COLLAPS 2012
© COLLAPS 2012 (without correlated systematic unc:) 3.30 ANNLOGo(394)
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(b) Coupled Cluster model.
S. J. Novario, et al., Phys. Rev. C 102, 051303(R),

(a) VS-IMSRG model. (2050)

T. Miyagi, et al., Phys. Rev. C 102, 034320,
(2020)

o Mg has a different predicted charge radius in the two models above.
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@ We want to measure the charge radii of exotic magnesium isotopes,
such as 3*Mg, 33Mg and ?°Mg.
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@ We want to measure the charge radii of exotic magnesium isotopes,
such as 3*Mg, 33Mg and ?°Mg.

@ These are very rare and short-lived isotopes — need techniques such as
laser spectroscopy to probe them.
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What is Collinear Laser Spectroscopy?

By probing an atom’s electronic structure, we can determine the properties

of its nucleus, such as:

or

@ nuclear spin

@ electromagnetic moments
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@ charge radii
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Many observables become accessible with only one measurement!
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Conventional fluorescence-based CLS
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Our method: MIRACLS
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Our method: MIRACLS

Photo-Multiplier Tube (PMT)
MR-ToF device

ion of

interest

re-emitted Ilghtw
El cexclted
ST
C

electron

electrostatic mirrors
@ signal-to-noise ratio improvement

S

Increased

statistics

\VAYAY

Incoming laser

N

= No\/—
@ More exotic radionuclides with low production yields can be probed
Anthony Roitman (McGill Universi




MIRACLS method

Paul Trap injection: (show animation)
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MIRACLS method

Paul Trap extraction: (show animation)
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MIRACLS method

CLS in MR-ToF Device: (show animation)
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Improvement Factor
@ Single-passage mode:

24Mg D1 line collinear mode
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Figure: Preliminary
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Improvement Factor

o Multi-Reflection improvement:
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Improvement Factor

o Multi-Reflection improvement:
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Improvement

Factor

o Multi-Reflection improvement:
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Improvement Factor

o Multi-Reflection improvement:

24Mg D1 line collinear mode
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Collinear-Anticollinear measurements

o Collinear:

Vg =
@ Anticollinear:
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Collinear-Anticollinear measurements

o Collinear:

Vg = Ve
@ Anticollinear:

=] & = E DA
Anthony Roitman (McGill University/CERN)



Collinear-Anticollinear measurements

o Collinear: 15
W =Ve—F7—=
V1 -2
@ Anticollinear: 1
vy = +8

= Vg = +/Va- V¢

@ Removes the need for knowing beam energy for the determination of
V0
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Mass separation capabilities of MIRACLS

@ Due to a high beam energy (> 10keV), MIRACLS can be used as a
high-resolution, high flux mass separator
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Mass separation capabilities of MIRACLS

@ Due to a high beam energy (> 10keV), MIRACLS can be used as a
high-resolution, high flux mass separator

number of ions in trap
flux =

separation time
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Mass separation capabilities of MIRACLS

@ Due to a high beam energy (> 10keV), MIRACLS can be used as a
high-resolution, high flux mass separator

number of ions in trap
flux =

separation time

@ For higher energies:
» number of ions stored can increase because of reduced space charge
effects.
> bunches with smaller time spread can be accepted into MR-ToF =
shorter separation time.
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Mass separation capabilities of MIRACLS
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Figure: F.M. Maier, NIM A, 1056, 168545, (2023)

@ 10° ions/s with mass resolving power R = 10° at 30 keV beam energy.
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Mass separation capabilities of MIRACLS
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Figure: F.M. Maier, NIM A, 1056, 168545, (2023)

@ 10° ions/s with mass resolving power R = 10° at 30 keV beam energy.
@ Plans for a general purpose mass sepator at ISOLDE.
» Needs to be upgraded with shorter drift tube (currently R = 10%)
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Beamtime conducted on June 30th, (2 days ago)
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Beamtime: Isotope shift measurements

Hyperfine Spectra for even magnesium isotopes, D1 line, Collinear mode
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Figure: Preliminary

@ Measured the collinear and anticollinear D1 and D2 transitions for
even magnesium isotopes 24~32Mg.
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Beamtime: Isotope shift measurements
isotope shift for D1 line (Already measured in 2013 at COLLAPS)

Comparison of isotope shift for d1 transition
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Figure: Preliminary.
COLLAPS: D. T. Yordanov, et al., Phys. Rev. Lett., 108:042504, (2012)
Stable Mg: V. Batteiger, et al., Phys. Rev. A, 80:022503, (2009)
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Beamtime: Isotope shift measurements
isotope shift for D2 line (New measurement!)

Comparison of isotope shift for d2 transition
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Figure: Preliminary.
COLLAPS: D. T. Yordanov, et al., Phys. Rev. Lett., 108:042504, (2012)
Stable Mg: V. Batteiger, et al., Phys. Rev. A, 80:022503, (2009)
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Sensitivity limit: 28 ions / cycle

Sensitivity Measurement
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Figure: Preliminary

@ A measurement taken with equivalent of 12 hours with ISOLDE beam.
o 3*Mg achievable next beamtime (150 ions / uC)
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Plans for next beamtime

6)

@ Add more PMTs for photon detection (currently 3, we have room for
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Plans for next beamtime

@ Add more PMTs for photon detection (currently 3, we have room for
6)
@ Reduce stray light (currently around 200kHz at 0.5 mW laser power)
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Plans for next beamtime

@ Add more PMTs for photon detection (currently 3, we have room for
6)
@ Reduce stray light (currently around 200kHz at 0.5 mW laser power)

@ Add another laser for easier swap between anti-collinear and collinear
geometries.
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Summary

@ MIRACLS experiment is fully operational
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Summary

@ MIRACLS experiment is fully operational

@ successful measurements using collinear and anticollinear CLS of
short-lived 28:30:32Mg and stable >*2°Mg for D1 and D2 transitions.
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Summary

@ MIRACLS experiment is fully operational

@ successful measurements using collinear and anticollinear CLS of
short-lived 28:30:32Mg and stable >*2°Mg for D1 and D2 transitions.

o CLS sensitivity with 30 ions / measurement cycle demonstrated
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Summary

MIRACLS experiment is fully operational

successful measurements using collinear and anticollinear CLS of
short-lived 28:30:32Mg and stable >*2°Mg for D1 and D2 transitions.

CLS sensitivity with 30 ions / measurement cycle demonstrated

mass resolving power of 10* achieved (in non-optimized setup)
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Summary

@ MIRACLS experiment is fully operational

@ successful measurements using collinear and anticollinear CLS of
short-lived 28:30:32Mg and stable 22°Mg for D1 and D2 transitions.

o CLS sensitivity with 30 ions / measurement cycle demonstrated
@ mass resolving power of 10* achieved (in non-optimized setup)

o 3*Mg measurement within sights for beamtime later this year.
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Questions?
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