# The Tangerine project: Development of high-precision 65 nm silicon MAPS

H. Wennlöf for the Tangerine collaboration

24/4 -24

The Tangerine collaboration at DESY: A. Chauhan, M. Del Rio Viera, J. Dilg, D. Eckstein, F. Feindt, I.-M. Gregor, K. Hansen, L. Huth, S. Lachnit, L. Mendes, B. Mulyanto, D. Rastorguev, C. Reckleben, S. Ruiz Daza, J. Schlaadt, P. Schütze, A. Simancas, S. Spannagel, M. Stanitzki, A. Velyka, G. Vignola, H. Wennlöf

#### Outline

- Introduction
  - Monolithic active pixel sensors
  - The Tangerine project
- Sensor design
- Sensors and sensor testing
- Simulation studies
  - Methodology
  - Results
- Conclusions and outlook







### Monolithic active pixel sensors (MAPS)

# • MAPS combine sensitive volume and readout electronics in a single volume

- This enables lower material budget, reduced complexity, and reduced production cost compared to hybrid sensors
- A low material budget is essential for particle tracking applications
- MAPS have made significant progress in recent years
  - First MAPS used in the STAR experiment
  - Currently used in ALICE; the ALPIDE chip
  - The MALTA and MonoPix developments: developed as candidates for ATLAS
  - Current developments for the next ALICE tracker upgrade and the EIC
  - Large collection electrode MAPS prototypes widely investigated (e.g. MuPix, MightyPix, TelePix, ...)

#### Hybrid sensor sketch





### Monolithic active pixel sensors (MAPS)

- The ALPIDE chip is the current state-of-the-art MAPS sensor installed in a collider experiment
  - It utilises a development allowing for a **small collection electrode**, which reduces both detector noise and power consumption
  - The ALPIDE chip is made using a 180 nm CMOS imaging process
- Recently, access has been granted to a 65 nm CMOS imaging process, and this is envisioned to be used for the next ALICE inner tracker upgrade sensor
- The 65 nm process allows a **higher logic density** compared to previously used processes, leading to reduced pixel size or more in-pixel functionality
  - It also allows for decreased power consumption, and stitching for large-area sensor production
  - The process is so far unused in particle physics applications, however. It is crucial to test it



Artistic view of the ALPIDE chip cross section. Figure from <u>here</u>

### The Tangerine project (Towards next generation silicon detectors)

- Started in 2021 with the aim of **developing and investigating particle detection sensors in new silicon technologies**
- This presentation focuses on Work Package 1 of the project; **monolithic active pixel sensors** in a novel CMOS imaging technology (65 nm)
  - The project encompasses all aspects of sensor developments: electronics design, sensor design, prototype test chip characterisation
- The goal is development of a sensor with high precision and low material
  - Spatial resolution below 3 μm
  - Time resolution of less than 10 ns
  - Very low material budget, corresponding to at most 50  $\mu$ m of silicon (0.05% X/X<sub>0</sub>)
  - Per-pixel charge measurement
- Primary initial goal: development of a sensor for telescope use, for test beams
  - This will **demonstrate the capabilities of the 65 nm technology in a particle physics context**



### **Possible future applications**

- Lepton colliders, e.g.
  - CLIC
  - ILC
  - FCC-ee
- Electron-ion collider
  - Synergies, at least (same CIS technology developments)
- Test beam reference system
- Common denominator: radiation damage is **not much of an issue**



CLIC: https://home.cern/science/accelerators/compact-linear-collider



http://cds.cern.ch/record/2689893

https://www2.kek.jp/ipns/en/research/ilc/

Page 6

#### Sensor design

- The sensor design comprises both sensitive volume and electronics design
- For the sensitive volume design, there are three available layouts (all with a **small collection electrode**) originally designed for a 180 nm CMOS imaging process:
- Standard layout
  - ALPIDE-like



S. Senyukov et al. doi:10.1016/j.nima.2013.03.017

- N-blanket layout
  - Blanket layer of n-doped silicon, creating a deep planar junction



W. Snoeys et al. doi:10.1016/j.nima.2017.07.046

- N-gap layout
  - Blanket n-layer with gaps at pixel edges



M. Münker et al 2019 JINST 14 C05013

### **Sensor design at DESY**

- Design of an analog front-end with a **charge-sensitive amplifier** circuit
  - Krummenacher type feedback network for continuous reset and leakage current compensation
  - Higher Krummenacher current -> faster return to baseline
- Comparator with tunable threshold in each pixel



#### **CSA Output**



# **Sensors and sensor testing**











#### HELMHOLTZ

#### Lab measurements and test beams

- Measurements performed with **x-ray sources** (mainly iron-55) in labs, and with **particle beams** at test beam facilities
- Test beams at DESY
  - MIMOSA26 or ALPIDE reference telescope
    - Provides **particle hit position** information
    - Six planes
    - Device under test in the middle
    - DUT mounted on motion stages
  - 5 GeV electron beam
  - Trigger plane with **configurable RoI** (<u>TelePix</u>)
  - Corryvreckan used for analysis





### **Example observables for sensor characterisation**

#### **Cluster size**

- Number of pixels that register hits for a single incident particle (charge sharing)
- This will depend on the position of the incident particle, but with a **large number of particles** a mean value can be found, as well as the cluster size versus hit position
- Varies with threshold value

#### Efficiency

- Denotes the **fraction of particles incident on the sensor that produce a signal in the sensor**
- Goes between 0 and 1
  - If all particles traversing the sensor produce a signal, the sensor is 100% efficient
  - Desirable to have as high as possible
- Strongly related to threshold value
- Can find mean efficiency across the sensor, and look at efficiency versus hit position



# **Analog Pixel Test Structure (APTS)**

- Test chip designed at CERN
  - 4x4 active pixel matrix
  - Several versions and layouts available
    - Different pixel layouts and sizes
    - Different output buffers
- Tests carried out at several labs, including DESY
  - Focused on the source follower output buffer, and the standard and n-gap pixel layouts
  - Main focus on a  $25x25 \ \mu m^2$  pixel size
- At DESY: integrated with the **Caribou** readout system, on a new chip board









**ASIC** Design





Page 13

### **APTS labs and testbeams**

- Comparisons made of different layouts under different biasing conditions
- Example results shown on the right, comparing the standard and n-gap layouts
- Cluster size reduced with increasing threshold
- Standard layout has **more charge sharing**, due to undepleted region at pixel edges
- Detection efficiency decreases as threshold increases
- N-gap layout **maintains efficiency to higher thresholds**, due to increased depletion and lateral electric field component
  - Trade-off between cluster size and efficiency

#### Mean cluster size



#### **APTS labs and testbeams, timing results**

- Goal: understand the signal generation and possible time resolution of the sensor
- Rise time of **signal pulses** investigated for the four inner pixels, using a fast oscilloscope
- Can study the rise time for **different particle incidence positions**, giving information about the charge collection behaviour
- Figures show in-pixel rise time distributions for the standard and n-gap layouts
  - Standard layout shows a **clear difference** between centre and corner incidence
    - Undepleted outside of a bubble around the collection electrode
  - N-gap layout **faster and more uniform** 
    - Fully depleted, and charge pushed towards electrode



https://indico.cern.ch/event/1323113/contributions/5823791/



x [µm] Page 14

# H2M from the ER1 submission - current chip

#### Hybrid-to-Monolithic

- Goals of the sensor:
  - Study challenges of porting a known hybrid pixel detector architecture into a monolithic chip
  - Exercise digital-on-top design flow and methodology in monolithic process
  - Design and test a compact digital cell library
- Several institutes collaborating in the development
  - Analog part **designed at DESY**
  - Prototype testing done at DESY and CERN
- Sensor specifications:
  - 64x16 pixels, of  $35x35 \ \mu m^2$  size and in the n-gap layout
  - Full analog and digital FE in each pixel
  - 4 (non-simultaneous) acquisition modes; 8-bit ToA, 8-bit
     ToT, photon counting, and triggered











### H2M results - tuning

- Per-pixel **threshold trimming** possible using a 4-bit register
  - Used to counter pixel-to-pixel variations
  - Reducing threshold dispersion makes sensor response more uniform, allowing for a lower threshold
  - Performed using **intrinsic noise**
- Front-end parameter optimisation
  - Global biasing currents can be varied, and their impacts on noise and threshold dispersion observed
  - The goal is to find an **optimised working point**
  - Varies with different chip bias settings
  - In the end a compromise between low threshold dispersion and high amount of tunable pixels

Pixel count sum (whole matrix), bias voltage: -1.2 V



#### H2M results - test beam

- Several test beams carried out, investigating the different acquisition modes
- Figure shows **time-over-threshold spectrum** for different Krummenacher currents
  - Reminder: ToT **proportional to collected charge**
  - Higher I<sub>Krum</sub> means **faster return to baseline** for the signal
- Results qualitatively follow expectations:
  - Landau-like distribution
  - Lower ToT with higher Krummenacher current
- H2M is a **fully-functioning** advanced monolithic digitalon-top sensor in a 65 nm CMOS imaging technology!
  - Some things left to understand, however



https://indico.cern.ch/event/1323113/contributions/5823792/

#### H2M results - test beam and laser setup: efficiency

Efficiency map 1.0 1.0 11.50 60 0.9 11.45 0.8  $\star$ ★ [mm] 50 11.40 in-pixel y<sub>track</sub> [µm] - 0.8 Efficiency Efficiency 11.35 211.30 11.30 30 Po 11.25 20 0.6 × \* 11.20 - 0.2 10 11.15 0.5 11.10 0.0 17.1017.15 10 20 30 40 50 60 in-pixel  $x_{track}$  [ $\mu$ m] X Position [mm]

#### **In-pixel efficiency, test beam**

In-pixel efficiency, IR laser

- Efficiency displays an **unexpected pattern**
- Asymmetric low-efficiency region
- Reproduced both at test beam and laser deposition measurements
- Leading theory: related to **electric field perturbations** below the deep p-well, caused by the internal n-wells
  - Mitigation strategies discussed in preparation of the next submission
- New chip working point being investigated; may reduce pixel-topixel variations

### **DESY ER1**

- Same analog part as in H2M, but **more detailed control possible**
- 2x2 matrix with rectangular pixels of size 35x25 μm<sup>2</sup>
- N-gap layout with two different gap sizes;
   2.5 μm and 4 μm
- Initial tests with iron-55
  - Signal amplitude results are **unexpected!**
  - Two-peak structure, but **not**  $K_{\alpha}$  and  $K_{\beta}$
  - Peaks shift with increasing I<sub>Krum</sub>
- Reminder: higher I<sub>Krum</sub> means faster return to baseline
- Theory: deposits far from pixel centre get collected slowly, so some charge drains away before peaking



# Simulations









#### HELMHOLTZ

### **Motivation for simulations**

• A way to **understand and predict** sensor behaviour

- Computing power is **relatively cheap** nowadays
  - Simulations are cheaper and faster than prototype production
- Simulations also help in providing a **deeper understanding** of measurement results
- A combination of **detailed simulations** and **prototype testing** can be used to efficiently **guide the way** in sensor developments



Figures by A. Simancas, <u>BTTB10</u>

#### **Silicon sensor simulations**

- **Goal:** Accurate simulation of the **charge collection behaviour** in the sensitive volume
  - Enables prediction of sensor performance (e.g. resolution, efficiency)
  - Done by simulating the movement of electron-hole pairs created by an interacting particle
- **Issue:** The access to manufacturing process information may be **very limited** 
  - The Tangerine project for example utilises a commercial CMOS imaging process - detailed process information is proprietary
- Solution: development of a technology-independent simulation approach using generic doping profiles
  - Currently writing a paper describing the approach, serving as a toolbox for such simulations



x (pixels)

Simulated motion of individual electrons and holes deposited in the centre of a silicon sensor with a linear electric field

Simulating Monolithic Active Pixel Sensors: A Technology-Independent Approach Using Generic Doping Profiles

Håkan Wennlöf<sup>a,\*</sup>, Dominik Dannheim<sup>b</sup>, Manuel Del Rio Viera<sup>a,1</sup>, Katharina Dort<sup>b,1</sup>, Doris Eckstein<sup>a</sup>, Finn Feindt<sup>a</sup>, Ingrid-Maria Gregor<sup>a</sup>, Lennart Huth<sup>a</sup>, Stephan Lachnit<sup>a,1</sup>, Larissa Mendes<sup>a,1</sup>, Daniil Rastorguev<sup>a,1</sup>, Sara Ruiz Daza<sup>a,1</sup>, Paul Schütze<sup>a</sup>, Adriana Simancas<sup>a,1</sup>, Walter Snoeys<sup>b</sup>, Simon Spannagel<sup>a</sup>, Marcel Stanitzki<sup>a</sup>, Alessandra Tomal<sup>c</sup>, Anastasiia Velyka<sup>a</sup>, Gianpiero Vignola<sup>a,1</sup>

> <sup>a</sup>Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany <sup>b</sup>CERN, Geneva, Switzerland <sup>c</sup>University of Campinas, Cidade Universitaria Zeferino Vaz, 13083-970, Campinas, Brazil

### **Tools used in the simulation approach**



- Models semiconductor devices using **finite element methods**
- Calculates realistic and accurate **electric fields and potentials** from doping concentrations



Example electric field in TCAD



- Simulates **full detector chain**, from energy deposition through charge carrier propagation to signal digitisation
  - Interfaces to Geant4 and TCAD
- Simulation performed **quickly** allows for **high**statistics data samples across a full detector



Particle beam passing through a single sensor in Allpix<sup>2</sup>

### TCAD

#### **Technology computer-aided design**

- Models **semiconductor devices** in 2D or 3D, and numerically solves equations using provided information
  - By providing doping information, e.g. electric fields and weighting potentials can be calculated
  - Capacitances, I-V and C-V curves, and transient properties can be extracted
- **Fabrication steps** in semiconductor manufacturing can be simulated
- Different pixel geometries and layouts can be simulated in **great detail**
- Some example resulting electric fields shown on the right



Rectangular pixel simulation, <u>A. Simancas</u> Page 24

# **Allpix Squared**

A Monte Carlo simulation framework for semiconductor detectors

- Simulates charge carrier motion in semiconductors, using well-tested and validated algorithms
  - Includes different models for e.g. charge carrier mobility, lifetime and recombination, trapping and detrapping
  - Support for several semiconductor materials and pixel and sensor geometries
- Provides a **low entry barrier** for new users
  - Simulations are set up via **human-readable configuration files**
- Steady development over many years
  - Framework is easily extendable and widely used
  - **Open-source**, and written in **modern C++**
  - Version 3.0.3 released on December 14th 2023
- <u>User workshop</u> presentations hold many example applications



Website and documentation: https://allpix-squared.docs.cern.ch/

[AllPix]
number\_of\_events = 10000
detectors\_file = "telescope.conf"

[GeometryBuilderGeant4]
world\_material = "air"

```
[DepositionGeant4]
particle_type = "Pi+"
number_of_particles = 1
source_position = 0um 0um -200mm
source_type = "beam"
beam_size = 1mm
beam_direction = 0 0 1
```

```
[ProjectionPropagation]
```

[SimpleTransfer]

#### [DefaultDigitizer]

Minimal simulation configuration example Page 25

## **Quick aside: Allpix Squared workshop 2024**

- Held in Oxford, 22nd to 24th of May
- <u>https://indico.cern.ch/e/apsqws5</u>
- Basic **registration is free**, but lunches and workshop dinner can be provided for a fee
- In-person registration deadline: 4th of May
  - If you want to present something: talk to me or anyone form the organising committee, and we can sort it out
  - Abstract submission is still open
- Workshop brings together the Allpix Squared community for discussions and presentations
  - Developers, users, and **curious people** welcome!



Abstract deadline: 22 April Registration deadline: 4 May UNIVERSITY OF

### Silicon simulation layout and assumptions

#### Using the **Tangerine project** as an example

- High-resistivity **epitaxial layer** grown on low-resistivity **substrate**
- Approximate doping concentrations can be found in **published papers** and theses, that have been approved by the foundry
  - The exact values are proprietary information, however
- Doping wells are simulated **without internal structure** and as flat profiles
  - Small collection n-well in the centre of the pixel
  - Deep p-well holding the in-pixel CMOS electronics
- **3D geometry** simulated, including **metal bias contacts** and **Ohmic contact regions** in the silicon

|                                       | N-well collection<br>electrode |  |
|---------------------------------------|--------------------------------|--|
| Deep P-well,<br>shielding electronics |                                |  |
| N                                     |                                |  |
|                                       |                                |  |
| Epitaxial laver, P <sup>.</sup>       |                                |  |
| Substrate, P <sup>+</sup>             |                                |  |

"N-gap layout", M. Münker et al 2019 JINST 14 C0501



## **Finite element method simulations using TCAD**

Using the **Tangerine project** as an example

- Using TCAD, **doping profiles** and **electric fields** are simulated
  - Studies are made observing the impact of varying different parameters, such as well doping concentrations and mask geometries
- Starting by creating the **geometry and doping regions** 
  - Doping geometry is **further refined** by simulating diffusion between regions at reasonable **sensor production process temperatures** 
    - Gives a continuous interface between epi and substrate
- Device simulations used to simulate electric fields, electrostatic potentials, and performing transient simulations



Process simulation result, showing dopant diffusion between substrate and epitaxial layer

### **Finite element method simulations using TCAD**

Example study: impact of n-gap size on electric field

- The gap in the n-gap layout is introduced to give a **lateral electric field at pixel edges**
- The magnitude of the field depends on the **size of the gap** 
  - A small gap makes the lateral components cancel, and a large gap leads to a low-field region
- Figures show simulation results for the **lateral electric field** (red and blue) for different gap sizes



DESY.

### **Finite element method simulations using TCAD**

#### **Transient simulations**

- Extracting the **time-dependent induced signal** on the collection electrodes, from traversal of a MIP
- Investigating both **pixel corner** incidence and **pixel centre** incidence
  - Gives indication of "worst case" and "best case" particle hit scenarios





Transient pulses for pixel centre and corner incidence

- Flexible and modular framework, describing each part of semiconductor signal generation and propagation
- Allows import of **TCAD fields and doping profiles** 
  - Allpix<sup>2</sup> and TCAD make a **powerful combination**; fast and detailed simulations possible, allowing high statistics



Figure from S. Spannagel, <u>BTTB10</u>, and A. Simancas, <u>4th Allpix Squared User Workshop</u>

#### Impact of dopant diffusion simulation

- Linegraphs to demonstrate charge carrier movement
- Without simulated dopant diffusion, a **significant electric field appears** in the epitaxial layer-substrate interface
  - This is **unphysical**
- With simulated dopant diffusion (see slide 28), there is a **smooth transition region** rather than a step function
  - More natural, and provides a better match to data



#### Impact of mobility model

- Physical parameters and models can easily be **exchanged**
- Example: **mobility models** in silicon
  - Jacoboni-Canali model is doping-independent
    - Sufficient for describing charge propagation in low-doped regions
    - In high-doped regions (e.g. substrate) diffusion is unphysically large
  - Extended Canali model (including the Masetti model) is dopingdependent
    - Describes charge carrier motion well also in highly-doped regions
- Linegraphs show the **propagation paths of individual charge carriers** 
  - Each blue line is the path of a single electron



#### Impact of mobility model

- Mobility model also impacts **final observables**
- High-statistics simulations allow extraction of observables such as cluster size, resolution, efficiency
- Figure shows **sensor efficiency vs detection threshold**, for two different mobility models
  - Simulation carried out with a DESY II-like beam of electrons
  - Each point corresponds to 500 000 events, so the statistical error bars are very small
- The doping-independent mobility model **overestimates efficiency**, due to an excess of charge collected from the highly-doped substrate



# Allpix<sup>2</sup> combined with TCAD

#### **Example result from the** <u>**Tangerine project</u></u></u>**

- High-statistics simulations allow extraction of observables such as cluster size, resolution, efficiency
- Sensor mean efficiency versus detection threshold, for different bias voltage
  - Simulation carried out with a DESY II-like beam of electrons; many events (500 000), so statistical error bars are small
- The trend is as expected:
  - Efficiency decreases as threshold increases
  - The sensor reaches its full efficiency potential already at -1.2 V
- 0 V deviates from the others by being less efficient as threshold increases, most likely due to **incomplete depletion**



### Allpix<sup>2</sup> combined with TCAD - different pixel geometries $\Box$ $\bigcirc$

#### **Example result from the** <u>Tangerine project</u>

- Simulations allow for comparison of the performance of different sensor geometries
- A hexagonal layout leads to **reduced charge sharing in pixel corners** and a reduced distance from pixel boundary to pixel centre
  - Allows efficient operation at higher thresholds, and possibly better spatial resolution
- Tests have been performed comparing square pixels and hexagonal pixels, **maintaining the pixel area** 
  - The space available for readout electronics thus remains the same per pixel
- Figure compares hexagonal pixels 18 µm corner-tocorner, and 15x15 µm<sup>2</sup> square pixels, in the standard layout (ALPIDE-like)



#### Efficiency, hexagonal and square

### **Transient simulations, comparing TCAD and Allpix<sup>2</sup>**

- Generating weighting potentials for use in Allpix<sup>2</sup>, from the electrostatic potentials from TCAD
  - Using Allpix<sup>2</sup> for the transient simulations gives a lower computational cost, and allows use of Geant4 energy deposition
- First step: compare Allpix<sup>2</sup> results to TCAD results
  - Allpix<sup>2</sup> results are the average of 10 000 events, TCAD is a single event
  - Same settings are used for charge carrier creation and mobility
  - Results in general agreement
- Allows for simulation of sensor **time response**



(a) Standard layout

### Allpix<sup>2</sup> combined with TCAD - Charge collection time of DESY ER1

#### **Example result from the** <u>Tangerine project</u>

- Reminder: higher Krummenacher current (i.e. faster return to baseline) leads to **two-peak structure** of single-energy x-ray (see slide 19)
- Charge deposition simulated over a full pixel, with 1640 electrons in each point
- Plot shows time taken to collect 1600 electrons
- There are clear regions of different collection time
- This can explain the two-peak structure seen in lab tests
  - Slower collection means that **more charge drains away** before peaking, leading to a **lower maximum amplitude**





#### Average time to reach 1600 electrons

### Allpix<sup>2</sup> combined with TCAD - Charge collection time of DESY ER1

#### **Example result from the** <u>Tangerine project</u>

- Reminder: higher Krummenacher current (i.e. faster return to baseline) leads to **two-peak structure** of single-energy x-ray (see slide 19)
- Charge deposition simulated over a full pixel, with 1640 electrons in each point
- Plot shows time taken to collect 1600 electrons
- There are clear regions of different collection time
- This can explain the two-peak structure seen in lab tests
  - Slower collection means that more charge drains away before peaking, leading to a lower maximum amplitude



#### Average time to reach 1600 electrons



# Allpix<sup>2</sup> combined with TCAD - Charge collection time of DESY ER1

y (mm)

#### **Example result from the** <u>Tangerine project</u>

- Lateral electric field magnitude
- In x, we have **a region with low field** between gap and collection electrode
- This is also in y, but **much smaller due to the smaller distance** - we never go as low as in x
- This leads to overall faster charge collection, as charges are **constantly pushed** towards the collection electrode
- Simulations are a **powerful tool** for providing **understanding** of results

#### 450 0.01 400 350 0.005 300 250 0 200 150 -0.005 100 50 -0.01 -0.01 0 0.01 x (mm)

#### Lateral electric field at z=0.019000 mm

# **Simulations compared to data**

#### **Does the procedure** *actually* **work?**







#### HELMHOLTZ

## Allpix<sup>2</sup> combined with TCAD - Preliminary comparison to data

#### **Example result from the** <u>Tangerine project</u>

- Testbeams have been carried out at DESY, and comparisons made to simulations
- Results from the "Analog Pixel Test Structure" (<u>APTS</u>)
  - N-gap layout
  - $25x25 \ \mu m^2$  pixel size
  - 4x4 pixel matrix
  - -4.8 V bias voltage
- The trend between simulations and data **matches well**

#### **Cluster charge distribution**



## Allpix<sup>2</sup> combined with TCAD - Preliminary comparison to data

#### **Example result from the** <u>Tangerine project</u>

- Testbeams have been carried out at DESY, and comparisons made to simulations
- Results from the "Analog Pixel Test Structure" (<u>APTS</u>)
  - N-gap layout
  - $25x25 \ \mu m^2$  pixel size
  - 4x4 pixel matrix
  - -4.8 V bias voltage
- The trend between simulations and data matches well
  - Error bars on the simulated results are purely statistical here
- In conclusion, the developed **simulation procedure works well**, without any proprietary information

#### Mean efficiency vs threshold



### **Conclusions and outlook**

- The Tangerine project is **successfully participating in investigation of a 65 nm CMOS imaging process** for particle physics applications
- Prototypes have been **designed and tested** within the project
- Simulations are a **powerful tool** for sensor understanding and development
  - A technology-independent approach using generic doping profiles has been developed for silicon sensor simulations; a generic toolbox, free from proprietary information
- Next steps for **sensor testing**:
  - Continue characterising H2M, figuring out where the unexpected behaviour comes from
  - Further characterise the DESY ER1 chips (a new master's student has started work on this)
- Next steps for **simulations**:
  - Properly define the uncertainties of the simulation results and perform further comparisons to data to validate the predictive power of the simulations
  - Allpix Squared is developing, and will be **instrumental in DRD3 simulations**
- The Tangerine project has a **proposed succession** within the DRD3 framework



# **Backup slides**

DESY.



### **Transient simulations, comparing linear energy deposition to Geant4**

- Using the n-blanket layout
- Each signal is the average of 10 000 events, incident in the pixel corner
- Geant4 energy deposition includes stochastic effects, while linear deposit generates 63 electron-hole pairs per µm



#### N-blanket layout, corner incidence

### The Tangerine project: published references

- The Tangerine project: Development of high-resolution 65 nm silicon MAPS
  - <u>https://doi.org/10.1016/j.nima.2022.167025</u>
- Towards a new generation of Monolithic Active Pixel Sensors
  - https://doi.org/10.1016/j.nima.2022.167821
- Developing a Monolithic Silicon Sensor in a 65 nm CMOS Imaging Technology for Future Lepton Collider Vertex Detectors
  - <u>https://arxiv.org/abs/2303.18153</u>

