

Resonant Ultrasound Spectroscopy (RUS) A Study of the Vortex Lattice Phase Diagram of Niobium

Swiss Physical Society meeting 2024

Dang Xuan Dang :: Ph.D. student ETH Zurich, 10 September 2024

xuan.dang@psi.ch

Vortex Matter in Superconductors

Type II superconductor

- $\kappa > 1/\sqrt{2}$
- External magnetic field allows passing via quantised vortex lines

Repulsive interaction between vortices.

Scanning Tunnel Microscopy NbSe2, 1T, 1.8K

H. F. Hess et al., Bell Labs

Pinning of vortex lines.

Type II Superconductor

- Superconducting Transition Temperature 9.2K
- B_{c2} ~ 0.5T

Vortex matter in Niobium

- Immediate Mixed phase 0.1T < B < 0.2T
- Shubnikov phase

Resonant Ultrasound Spectroscopy (RUS) and Elasticity of Crystals

- RUS measures Eigenmodes of the sample
- Depend on sample dimensions, density and elastic modulus
- RUS measures all elastic moduli c_{ij} simultaneously.
- RUS is highly sensitive to changes in lattice strength.

For example:

BCC crystal has 3 components to the elastic tensor

c_{11}	c_{12}	c_{12}	0	0	0	
c_{12}	<i>c</i> ₁₁	<i>c</i> ₁₂	0	0	0	
c_{12}	<i>c</i> ₁₂	<i>c</i> ₁₁	0	0	0	
0	0	0	C 44	0	0	
0	0	0	0	C44	0	
0	0	0	0	0	C44	J

 c_{11} .. compression c_{12} .. torsion c_{44} .. shear

4

PSI

Spectrum computation

Calculate Eigen frequencies by Rayleigh-Ritz method.

5

Compare calculation to experiment

Adapt input parameters

Spectrum computation

Calculate Eigen frequencies by Rayleigh-Ritz method.

Get the new initial c_{ii}*

Compare calculation to experiment

RUS experimental setup

- Crystal is clampled by transmitter and receiver transducers.
- F.G controls the frequency of excitation.
- Amplifier gain the response signal.
- DAQ records data and plotting in screen of PC.

RUS Spectrum of Niobium (Nb)

➢ Mass: 1.2528 g

 \succ

8

 \succ c₁₁ = 245.6 GPa, c₁₂ = 138.7 GPa, c₄₄ = 29.3 GPa ^(*)

RUS spectrum of Nb at T = 16K

Comparison measured and calculated Spectrum

Eigenmodes as function of tuning parameters

Phase transition of Niobium by RUS measurement.

Conclusion

Developed RUS experiment successful investigate the phase transition of Niobium cause the change of elasticity.

RUS useful tool for the investigation vortex phases and phase transitions

Acknowledgments

Center for Neutron and Muon Sciences

M. Janoschek

M. Bartkowiak

M. Zolliker

C. Klauser

F. Fautz

Supplementary Information

Adding the term for order parameter (Q) and elastic strain (e) coupling (F_c) and elastic energy

Robert G. Leisure et al. Ultrasonic spectroscopy. chapter 5

14

PSI

Supplementary Information

Elastic tensor computing

	n	fexp(MHz)	fcalc(MHz)	%err wt	dlnf/dln	c11 dlnf/dlnc12	dlnf/dlnc44	sum	
	1	0.0966910	0.0936072	-3.19 0.	00 0.01058	-0.00545	0.99460	0.99974	
	2	0.1243830	0.1238165	-0.46	1.29546	-0.64098	0.34314	0.99762	
	3	0.1326780	0.1276039	-3.82 1	1.25959	-0.62301	0.36101	0.99759	
	4	0.1884900	0.1877040	-0.42 1.	00 0.04728	-0.02415	0.97655	0.99968	
	5	0.2013840	0.2016217	0.12 1.	00 0.38046	-0.18681	0.80493	0.99858	
	6	0.2045440	0.2049890	0.22 1.	00 0.47008	-0.23143	0.75972	0.99837	
	7	0.2268960	0.2247837	-0.93 1.	00 2.02363	-1.02535	0.00003	0.99832	
	8	0.2808700	0.2642724	-5.91 1.	00 0.11519	-0.06003	0.94423	0.99939	
	9	0.2831800	0.2849427	0.62 1.	00 0.25013	-0.12331	0.87235	0.99917	
	10	0.2845050	0.2852637	0.27 1.	00 0.58337	-0.29020	0.70588	0.99905	
	11	0.2846990	0.2860489	0.47 1.	00 0.09084	-0.04699	0.95574	0.99958	
	12	0.2909300	0.2912385	0.11 1.	00 0.20617	-0.10177	0.89490	0.99930	
	13	0.3028560	0.3025830	-0.09 1.	00 0.80270	-0.40820	0.60459	0.99910	
	14	0.3044030	0.3041980	-0.07 1.	00 0.79020	-0.40455	0.61326	0.99892	
	15	0.3068540	0.3069968	0.05 1.	00 0.04265	-0.01419	0.97126	0.99972	
	16	0.3406100	0.3410209	0.12 1.	00 0.20467	-0.08898	0.88340	0.99909	
	17	0.3808760	0.3811810	0.08 1.	00 0.58716	-0.26817	0.67908	0.99807	
	18	0.3823940	0.3821377	-0.07 1.	00 0.86308	-0.43581	0.57010	0.99738	
	19	0.3827420	0.3841636	0.37 1.	00 0.14384	-0.07397	0.92952	0.99939	
	20	0.3893330	0.3893532	0.01 1.	00 0.42145	-0.21570	0.79335	0.99909	
	21	0.3908650	0.3965475	1.45 1.	00 0.55082	-0.27360	0.72143	0.99864	
	22	0.3989490	0.4019516	0.75 1.	00 1.18078	-0.62251	0.43689	0.99516	
	23	0.4036940	0.4021275	-0.39 1.	00 1.60025	-0.84621	0.24342	0.99747	
	24	0.4064160	0.4078617	0.36 1.	00 0.36414	-0.17471	0.81002	0.99945	
	25	0.4067130	0.4084954	0.44 1.	00 0.28952	-0.14000	0.84954	0.99906	
	c11	c22	c33 c23	c13 c	:12 c44	c55 c66			
	250.28	8 250.28	250.28 133.68	133.68 13	3.68 31.172	31.172 31.172			
dx(cm) dy(cm) dz(cm) Shape set to rectangular paralleleniped									

0.3840 0.4100 0.9400