This slide was intentionally left blank

simplemaps.com/svg/country/ch#all

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No. 101079773

~ 30 MV/m

~ 1000 MV/m

Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator, Blumenfeld, at al.

Demonstration of Large Bandwidth Hard X-Ray Free-Electron Laser Pulses at SwissFEL, Prat, et al.

simplemaps.com/svg/country/ch#all

The effect of the wakefield structure depends on the input

Chirping for RF accelerator

The wakefields change both the energy spread and centroid energy

5 mesh elements per σ produces accurate wake potentials

Mesh setting determines how accurately the

- 1. Source
- 2. Boundaries
- 3. Electromagnetic fields

are represented in the simulation

Conclusion

We have demonstrated the manipulation of the longitudinal phase space of beams from a conventional accelerators using a wakefield structure

I think we should use wakefield structures to control the energy spread of future particle accelerators

Extra slides

Controlling the electron beam energy at SwissFEL

gap = 3.0 mmgap = 0.5 mmprojection centroid 4900 4950 4900 4950 5000 5000 E (MeV)

Evan Ericson, Rasmus Ischebeck, Paolo Craievich,

Fabio Marcellini, Eduard Prat, Sven Reiche, Mike Seidel

Swiss Physical Society Annual Meeting 2024, September 13, 2024

Dechirping strength

For gap = 0.5 mm, structure produces wake with slope of -26 MV/pC/m/mm For 2*1 m structure, 200 pC bunch: Bunches with -10.4 MV/um chirp can be dechirped

Less than a tenth of the structure needs to be simulated to obtain accurate wake potentials

Wake potential does not change when including terms above index 45

SwissFEL

Parameter	Value
Length	740 m
LINAC frequency	5.7 GHz (C-band)
Repetition rate	100 Hz
Energy	up to 6.1 GeV
Bunch charge	10 – 200 pC
Trajectory jitter	< 10% of beam size
Relative energy jitter	~ 10-4
Arrival time jitter	< 10 fs
Slice emittance	200 nm (for 200 pC)
Bunch length	< 1 fs – 50 fs

EuPRAXIA

Parameter	SwissFEL	EuPRAXIA [*]
Length	740 m	150 m
LINAC frequency	5.7 GHz (C-band)	11.9942 GHz (X-band)
Repetition rate	100 Hz	~ 50 Hz
Energy	up to 6.1 GeV	1 – 1.2 GeV
Bunch charge	10 – 200 pC	30 – 50 pC
Trajectory jitter	< 10% of beam size	-
Relative energy jitter	~ 10-4	-
Arrival time jitter	< 10 fs	-
Slice emittance	200 nm (for 200 pC)	500 nm
Bunch length	< 1 fs – 50 fs	10 fs

Presented by A Biagioni at EuPRAXIA-DN School April 2024

EuPRAXIA Conceptual Design Report, Assmann, et al.

[*] Presented by C Welch at EuPRAXIA-DN School April 2024

EuPRAXIA

18

- Smaller accelerator may be less expensive and more sustainable
- Challenge: produce beams with low energy spread
- Small wavelength of plasma wake leads to large difference in acceleration of particles within a bunch with a finite length
- The beam's energy spread determines the bandwidth of the FEL
- One possible solution is wakefield structures

Positron acceleration in plasma wakefields, Cao, et al.

Longitudinal phase space synthesis with tailored 3Dprintable dielectric-lined waveguides, Mayet, et al.

- 1. Geometric discontinuities of accelerator components produce wakefields
- 2. Finite conductivities of accelerator components produce wakefields

Theory of wakefields in a dielectriclined waveguide, Park & Hirshfield

Wake function:

BNS damping, Novokhatski

Wake potential:

$$W_{z} = \int_{0}^{\infty} ds' \,\lambda(s - s') w_{z}(s')$$

 $dz E_z$

 $w_{z} = -\frac{1}{2}$

 Red witness particle experiences -400 V per pC in the drive beam per meter of structure

- Flat slab dielectric passive structure with adjustable gap
- Routinely used to make ultrashort pulses, adjust FEL bandwidth

Parameter	Value
half-gap, a	0.25 mm – 1.5 mm
Length, L	1 m
Width, w	15 mm
Dielectric thickness, d	0.4 mm
Alumina Permittivity, ϵ_r	~ 10

Sing bunch experiment

Wed 15-02-2023 17:51:18

4 kA

Wed 15-02-2023 17:21:31

Experiments that benefit from an increased FEL bandwidth

- X-ray crystallography
- X-ray emission spectroscopy
- X-ray absorption spectroscopy
- Stimulated Raman spectroscopy
- Multiple wavelength anomalous diffraction
- X-ray absorption near edge structure
 - 7050 eV 7250 eV