

Technology

High Field Magnet Roadmap at PSI/CHART

Roadmap overview and progress report

Douglas Araujo¹, Bernhard Auchmann^{1,2}, Andre Brem¹, Michal Duda¹, Jaap Kosse¹, Thomas Michlmayr¹, Colin Müller¹, Henrique Garcia¹, Dmitry Sotnikov¹, Anna Stampfli¹, J. Van den Eijnden¹, and Ariel Haziot²

¹Paul Scherrer Institute ²CERN This work was performed under the auspices and with support from the Swiss Accelerator Research and Technology (CHART) program.

SPS Annual Meeting, Zürich, September 2024

Agenda

- High Field Magnets
- Roadmap
- Progress
- High Temperature
 Superconductors
- Coming soon...

High Field Magnets

FCC-hh: summary of main machine parameters for pp and physics potential

parameter	FCC- <u>hh</u>	HL-LHC	LHC
collision energy cms [TeV]	81 - 115	14	
dipole field [T]	14 (Nb ₃ Sn) - 20 (HTS)	8.33	
circumference [km]	90.7	26.7	
arc length [km]	76.9	22.5	
beam current [A]	0.5	1.1	0.58
bunch intensity [10 ¹¹]	1	2.2	1.15
bunch spacing [ns]	25	25	
synchr. rad. power / ring [kW]	1020 - 4250	7.3	3.6
SR power / length [W/m/ap.]	13 - 54	0.33	0.17
long. emit. damping time [h]	0.77 – 0.26	12.9	
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	~30	5 (lev.)	1
events/bunch crossing	~1000	132	27
stored energy/beam [GJ]	6.1 - 8.9	0.7	0.36
Integrated luminosity/main IP [fb ⁻¹]	20000	3000	300

If FCC-hh after FCC-ee: significantly more time for high-field magnet R&D aiming at highest possible energies (HTS) and lowest electricity consumption

Formidable challenges:

□ high-field superconducting magnets: 14 - 20 T

 \Box power load in arcs from synchrotron radiation: 4 MW \rightarrow cryogenics, vacuum

 \Box stored beam energy: up to 9 GJ \rightarrow machine protection

□ pile-up in the detectors: ~1000 events/xing

 \Box energy consumption: 4 TWh/year \rightarrow R&D on cryo, HTS, beam current, ...

Formidable physics reach, including:

- □ Direct discovery potential up to ~ 40 TeV
- $\hfill\square$ Measurement of Higgs self to ~ 5% and ttH to ~ 1%
- □ High-precision and model-indep (with FCC-ee input) measurements of rare Higgs decays ($\gamma\gamma$, $Z\gamma$, $\mu\mu$)
- G Final word about WIMP dark matter
- □ Insight into EW phase transition in early universe

https://indico.cern.ch/event/1298458/timetable/

MagDev

https://www.psi.ch/en/c as/chart-magdev

13.09.2024

Roadmap | CHART Environment

MagRes: resins WireChar: conductor MagComp: mechanics MagAM: 3D printing MagNum: numerics

Paul Scherrer Institute PSI

C. Senatore

X. Kong

Roadmap | R&D Vehicles small samples

Standard BOX – addressing training in Nb₃Sn

Training Plot

evaluate impregnation systems

> 22 samples tested in the last 3 years

Compression BOX – degradation due to stress

- reversible and irreversible degradation in external field
- ➢ 6 samples tested, 2 currently under testing

BigBOX: multi turn Nb₃Sn coil

Assessing coil performance Superconductor margin Conductor degradation Coil training behaviour

Validating technologies Preload free coil Interface conditions Wax and filled wax impregnated coils Stress-management Ceramic Insulation Coating

DCC17

Magnet

IBNL

Test Results: 6 times power-up to short sample limit without training behavior

BigBOX2 (impregnated with filled-wax)was manufactured, delivered to BNL and it is waiting to be tested

Subscale SMCC | Concept

4 common-coils, coil-pack assembly and splice region

Paul Scherrer Institute PSI

Outer pads

Subscale SMCC | Innovations

Stress-Management **Common-Coils Former**

Winding Technique

Instrumentation routing

First stand alone impregnated with Filled Wax system to be tested

Impregnation Technique

Re-use of tooling through winding, reaction and impregnation

Former Coating

2 coils reacted at CERN, SMT Section 2 coils reacted at PSI

HTS Challenges and Opportunities

sensitive to mechanical strain sensitive to thermal load

HTS coil manufacturing

HTS tape operation Noise cancellation and Protection Modelling validation

Modelling FEM software for electro-magnetics postprocessing measured data 14 T at 20 K 16 T at 20 K

AC losses prediction

Production and measurements

Single tape

Bending and twisting of tape:

- Set of bending experiments showed degradation of HTS tapes
- Twisting on 15-mm former for double pancake with 4-mm twist pitch (tape width)

Pancake coils

Several samples of pancake production:

- 1 single tape pancake
- 2 double-tape stack pancake
- 1 single tape double pancake

Results:

- 48 measurements done in LN2
- Co-wound coil works for protection
- Signal recorded to 1 uV

Validation (w/ U. Twente)

Criteria for validation:

- Voltage on coil (done)
- AC losses (ongoing)
- Magnetic field (ongoing)

Coil voltage validation

Modelling

HTS cable

HTS straight soldered stack cable has several benefits:

- Shape fits to racetrack design
- Fits to Block-coil and Common coil
- Highest packing factor
- Highest oriented critical current

16 T HTS dipole

AC losses optimization Type: Block coil Target field: 16 T Temperature: 20 K

Goal: getting AC losses prediction with different computation software

Coming soon...

- LTS and HTS samples for testing new impregnation systems, AC losses study and modelling validation
- 2024: LTS subSMCC2: testing new protection systems that could be suitable for both LTS and HTS
- 2025: HTS subSMCC3: insulated ReBCO based cable
- 2025: SMACC: 13 T demonstrator with field quality

