

HTS4 Towards an energy-efficient FCC-ee

J. Kosse, J. Schmidt, B. Auchmann, A. Brem, A. Thabuis, M. Koratzinos

SPS2024

This work was performed under the auspices of and with support from the Swiss Accelerator Research and Technology (CHART) program

Contents

- HTS4 project goals
- Hardware demonstrators
- Cryogenic cooling & operating temperature
- Powering

High temperature superconductors (HTS)

• Superconducting devices can*

-Provide otherwise not achievable functionality

-Increase availibility

–Make operation more energy efficient

• HTS compared to LTS opens up the design space, both in terms of field and temperature

*Not always...

3

FCC-ee conceptual design

Synchrotron radiation loss \rightarrow 11.9 TWh

90-100 km ring with normal-conducting magnets

Q+S=short straight section (SSS), L~3-6 m

Jeremie Bauche, CERN, FCC week 2024

Proposal: HTS nested dip+sext+quad HTS short straight section: HTS4

 Save 2.8 TWh on joule heating in S+Q Save 2 TWh on SR radiation Pay ~ 1 TWh for cryocooling

~20% reduction of total FCC-ee consumption

- Gain optics flexibility
- Cost competitive (?)

PSI

Three related CHART projects

Requirements

• 2900 SSS, double aperture,

spaced ~ 30 m from each other along 90 km tunnel

Optics requirements

dipole, sextupole, quadrupole independent

Combined function won't work

Can't rely on iron

Contents

- HTS project goals
- Hardware demonstrators
- Cryogenic cooling & operating temperature
- Powering

HTS4 hardware plans (1)

- Sextupole demonstrator, cosine-theta type
- Self-bonding coating
 - Allows coil curing after winding. Polyvinylbutyral with silver powder and graphite powder.
 - Coating provides partial-insulation with controlled resistance, targeting 100 $m\Omega\cdot cm^2$

PSI

HTS4 hardware plans (2)

- Sextupole demonstrator, canted-cosine-theta type
- Insulated conductor
- Wax impregnated

HTS4 hardware plans (3)

- 1-m prototype
 - Technology choices to be based on lessons from the 2 demonstrators

Contents

- HTS project goals
- Hardware demonstrators
- Cryogenic cooling & operating temperature
- Powering

HTS vs NC option

$\Delta costs = \Delta costs_{electricty} + \Delta costs_{capital}$

Cryocooler-based HTS SSS more expensive than room-temp option

... for now

14

Paul Scherrer Institute PSI

*RF hardware saving not taken into account

13.09.2024

Cooling

Route 1)

Centralized cooling plant with distribution line +Thermal switch to connect to each SSS

Route 2)

Individual cooling of each magnet

Unknown: radiation aspects

Cryocooler based option

Individual cooling of each magnets, via high-reliability single-stage coolers+redundancy

Variable frequency operation

Cooling system (2900 magnets, 8700 coldheads) Reliability (1 year) 0.9939 Availability (1 year) 0.9995 In-tunnel maintenance 300 FTE-days/year

Unknown: radiation aspects

10.1109/TASC.2023.3346847

Alternative: cryogenic distribution line

Contents

- HTS project goals
- Hardware demonstrators
- Cryogenic cooling & operating temperature
- Powering

Current leads

High current conduction-cooled leads result in a big heat load

E.g. 2 kA leads in PSI test stand need dedicated cryocooler (7 kW power draw)

Cryogenic Power Electronic System

Swiss Accelerator

Research and Technology

In support of FCCee HTS4, CPES develops a cryogenic power supply which, in its first iteration, may reduce heat load to cold source by 70%.

First 5-phase 100-A demonstrator successfully tested in LN2.

Next steps:

- low-temperature testing
- Reliability engineering
- Scale-up of I_{op}

Societal Impact:

Interest by Airbus in CPES collaboration.

Follow-up projects should tackle: Availability + Maintainability = Dependability and Radiation hardness for FCC-ee and scaling to higher currents (10-20 kA range) for HFM

Conclusions

Moving from room-temp to HTS magnets can reduce FCC-ee power consumption significantly (~20%)

Demonstrators are under constructions

Cryocooler-based HTS short straight sections might be cost-effective in the future But radiation might be a show-stopper

Cryogenic dc/dc convertor might make conduction-cooled systems much more energy efficient

Distributed cooling line is under investigation

Requirements

• 2900 SSS, double aperture,

spaced ~ 30 m from each other along 90 km tunnel

Optics requirements dipole, sextupole, quadrupole independent

Synchrotron radiation intercepted at discrete locations Longer magnet→longer distance between stoppers→larger bore

Quadrupole can not be shorter than 2.9 m Dipole filling factor as high as possible

Combined function won't work Individual power supply (=6x) OR shared+trim

Make the magnet as short as possible

Dipole, quadrupole, sextupole share the same axial space (nested)

Requirements

Via EPFL (Leon Van Riesen-Haupt, Cristobal Garcia)

Element	Magnetic component		Baseline Fields		CFMs	
	Dipole	Quad	Dipole [T]	Quad [T/m]	Dipole [T]	Quad [T/m]
Mian Dipoles	B1		0.0152		0.0125	
Quad F	Bf	QF		1.449	0.0067	1.449
Quad D	B1	QD		-1.449	0.0125	-1.449

Element Magnetic component **Baseline Fields** CFMs Dipole [T] Quad [T/m] Dipole [T] Quad [T/m] Dipole Quad 0.0612 0.0503 Mian B1 - - -- - -- - -Dipoles Quad F Bf QF 11.860 0.0271 11.860 - - -0.0503 Quad D Β1 QD -11.860 -11.860 - - -

Dipole x 4 Quad x 8

QF/2

Β1

Btt

Β1

QD

Β1

Btt

Β1

QF/2

Ζ

tĪ

How about the sextupole?

Many different sextupole strengths

Configurations with less families

NOT actively studied

Requirements

Via EPFL/CERN

Harmonic	$\left \int B_{n}\mathrm{d}z\right $ [Tm]	L _{mag} [m]	$ B_n $ [T]
Dipole	0.1459	2.9	0.0503
Quadrupole	0.3439	2.9	0.1186
Sextupole	0.1345	2.7	0.0498
Hor. dip corrector	0.0174	2.9	0.006
Vert. dip corrector	0.0174	TBD	TBD
Skew quadrupole	0.0058	TBD	TBD

Quadrupole can not be made shorter (quadrupole synchrotron radiation)

 \rightarrow bad news for short but powerful independent harmonics

State of art

When CFMs are introduced into the lattice, the Damping Partition change due to the **introduction of a dipolar component** in the quadrupoles.

The problem comes from the radiation integral I4, that depends on the sign of K1.

$$\begin{split} I_2 &= \oint \frac{1}{\rho^2} ds \;, \qquad I_4 = \oint \frac{D_x}{\rho} \left(2 \; k_1 + \frac{1}{\rho^2} \right) ds \\ I_5 &= \oint \frac{\mathcal{H}(s)}{|\rho^3|} ds \;, \qquad J_u = 1 - \frac{I_4}{I_2} \;, \\ \epsilon_u &= C_q \frac{\gamma^2}{J_u} \frac{I_{5u}}{I_2} \;, \qquad \tau_u = \frac{2E}{J_u U_0} T_0 \;, \end{split}$$

We studied different ratios of bending angles in QF and QD CFMs

 \rightarrow The ratio of fields (or bending angles) must be 0.53 to achieve the nominal emittance.

PSI

Proposal: HTS nested dip+sext+quad HTS short straight section: HTS4

Save 2.8 TWh on joule heating in S+Q Save 2 TWh on SR radiation Pay ~ 1 TWh for cryocooling

~20% reduction of total FCC-ee consumption

PSI

Paul Scherrer Institute PSI

26

Cryogenic dc/dc convertor

5-10x more efficient than high-current leads

Power Electronic Systems Laboratory

CPES Demonstrator (1)

- Full-bridge phase module losses measured in LN₂ @ 77 K
 - Including gate driver and phase inductor losses, 1 V dc input
 - 4 parallel EPC 2302 GaN transistors (100 V, 1.8 m Ω @ RT) per position

- Benchmark: 22 W leak-in losses for external (warm) PSU and 60 K cryostat temp.

Unknown: radiation aspects

27

Jonas Huber et al, ETHZ

Paul Scherrer Institute PSI

CHART project FCC-ee cryogenic power converter (CPES), ETHZ

FB Module Losses vs. Phase Current

0.7

0.6

ETH zürich

4