

HTS4 *Towards an energy-efficient FCC-ee*

J. Kosse, J. Schmidt, B. Auchmann, A. Brem, A. Thabuis, M. Koratzinos

SPS2024

This work was performed under the auspices of and with support from the Swiss Accelerator Research and Technology (CHART) program

Contents

- HTS4 project goals
- Hardware demonstrators
- Cryogenic cooling & operating temperature
- Powering

High temperature superconductors (HTS)

• Superconducting devices *can**

−Provide otherwise not achievable functionality

−Increase availibility

−Make operation more energy efficient

• HTS compared to LTS opens up the design space, both in terms of field and temperature

*Not always…

FCC-ee conceptual design

Synchrotron radiation loss \rightarrow 11.9 TWh

90-100 km ring with normal-conducting magnets

Q+S=*short straight section (SSS), L~3-6 m*

a a paul Scherrer Institute PSI 13.09.2024 and the Sauche, CERN, FCC week 2024 13.09.2024

Proposal: HTS nested dip+sext+quad HTS short straight section: HTS4

• Save 2.8 TWh on joule heating in S+Q Save 2 TWh on SR radiation Pay \sim 1 TWh for cryocooling

~20% reduction of total FCC-ee consumption

- Gain optics flexibility
- Cost competitive (?)

PSI

Three related CHART projects

Requirements

PSI

• 2900 SSS, double aperture,

spaced ~ 30 m from each other along 90 km tunnel

Optics requirements

dipole, sextupole, quadrupole independent

Combined function won't work

Can't rely on iron

Contents

- HTS project goals
- Hardware demonstrators
- Cryogenic cooling & operating temperature
- Powering

HTS4 hardware plans (1)

- Sextupole demonstrator, cosine-theta type
- **Self-bonding coating**
	- Allows coil curing after winding. Polyvinylbutyral with silver powder and graphite powder.
	- Coating provides partial-insulation with **controlled resistance**, targeting 100 mΩ ⋅ cm²

HTS4 hardware plans (2)

- Sextupole demonstrator, canted-cosine-theta type
- Insulated conductor
- Wax impregnated

HTS4 hardware plans (3)

- 1-m prototype
	- Technology choices to be based on lessons from the 2 demonstrators

Contents

- HTS project goals
- Hardware demonstrators
- Cryogenic cooling & operating temperature
- Powering

HTS vs NC option

$\Delta \text{costs} = \Delta \text{costs}_{\text{electricty}} + \Delta \text{costs}_{\text{capital}}$

Cryocooler-based HTS SSS more expensive than room-temp option

… for now

14 Paul Scherrer Institute PSI 13.09.2024

Cooling

Route 1) Centralized cooling plant with distribution line +Thermal switch to connect to each SSS

Route 2) **Individual cooling of each magnet**

Unknown: radiation aspects

Cryocooler based option

Individual cooling of each magnets, via high-reliability single-stage coolers+redundancy

Variable frequency operation

Cooling system (2900 magnets, 8700 coldheads) Reliability (1 year) 0.9939 Availability (1 year) 0.9995 In-tunnel maintenance 300 FTE-days/year

Unknown: radiation aspects

Contents

- HTS project goals
- Hardware demonstrators
- Cryogenic cooling & operating temperature
- Powering

Current leads

High current conduction-cooled leads result in a big heat load

E.g. 2 kA leads in PSI test stand need dedicated cryocooler (7 kW power draw)

Cryogenic Power Electronic System

ETHzürich Swiss Accelerator

Technology

In support of FCCee HTS4, CPES develops a cryogenic power supply which, in its first iteration, may reduce heat load to cold source by 70%.

First 5-phase 100-A demonstrator successfully tested in LN2.

Next steps:

- low-temperature testing
- Reliability engineering
- Scale-up of I_{on}

Societal Impact:

Interest by Airbus in CPES collaboration.

Follow-up projects should tackle: Availability + Maintainability = Dependability and Radiation hardness for FCC-ee and scaling to higher currents (10-20 kA range) for HFM

Conclusions

Moving from room-temp to HTS magnets can reduce FCC-ee power consumption significantly (~20%)

Demonstrators are under constructions

Cryocooler-based HTS short straight sections might be cost-effective in the future But radiation might be a show-stopper

Cryogenic dc/dc convertor might make conduction-cooled systems much more energy efficient

Distributed cooling line is under investigation

Requirements

• 2900 SSS, double aperture,

spaced \sim 30 m from each other along 90 km tunnel

Optics requirements dipole, sextupole, quadrupole independent

Synchrotron radiation intercepted at discrete locations Longer magnet→longer distance between stoppers→larger bore

Quadrupole can not be shorter than 2.9 m Dipole filling factor as high as possible

Individual power supply (=6x) OR shared+trim Combined function won't work

Make the magnet as short as possible

Requirements

Via EPFL (Leon Van Riesen-Haupt , Cristobal Garcia)

 $t\bar{t}$

How about the sextupole?

Many different sextupole strengths

Configurations with less families

NOT actively studied

Requirements

Via EPFL/CERN

Quadrupole can not be made shorter (quadrupole synchrotron radiation)

→bad news for short but powerful independent harmonics

State of art

FCC WEEK 2023

FCC WEEK 2023

When CFMs are introduced into the lattice, the Damping Partition change due to the **introduction of a dipolar component** in the quadrupoles.

The problem comes from the radiation integral I4, that depends on the sign of K1.

$$
I_2 = \oint \frac{1}{\rho^2} ds , \qquad I_4 = \oint \frac{D_x}{\rho} \left(2 k_1 + \frac{1}{\rho^2} \right) ds
$$

\n
$$
I_5 = \oint \frac{\mathcal{H}(s)}{|\rho^3|} ds \,, \qquad J_u = 1 - \frac{I_4}{I_2} \,,
$$

\n
$$
\epsilon_u = C_q \frac{\gamma^2}{J_u} \frac{I_{5u}}{I_2} \,, \qquad \tau_u = \frac{2E}{J_u U_0} T_0 \,,
$$

We studied different ratios of bending angles in QF and QD CFMs

→ The ratio of fields (or bending angles) must be 0.53 to achieve the nominal emittance.

PSI

Proposal: HTS nested dip+sext+quad HTS short straight section: HTS4

26 Paul Scherrer Institute PSI 2010 CONSERVITY OF TWO PAV 2 1 TWH for cryocooling consumption
Pav ~ 1 TWh for cryocooling consumption Save 2.8 TWh on joule heating in S+Q Save 2 TWh on SR radiation Pay ~ 1 TWh for cryocooling

~20% reduction

PSI

Cryogenic dc/dc convertor

5-10x more efficient than high-current leads

TEL Power Electronic Systems
 ILEL Laboratory

CPES Demonstrator (1)

- **Example 12 Full-bridge phase module losses measured in LN, @ 77 K**
	- Including gate driver and phase inductor losses, 1 V dc input
	- 4 parallel EPC 2302 GaN transistors (100 V, 1.8 m Ω @ RT) per position

- Benchmark: 22 W leak-in losses for external (warm) PSU and 60 K cryostat temp.

Unknown: radiation aspects

Jonas Huber et al, ETHZ

27 Paul Scherrer Institute PSI **13.09.2024** CHART project FCC-ee cryogenic power converter (CPES), ETHZ 13.09.2024

FB Module Losses vs. Phase Current

 $20A$ 347 mW

 $±4.2$ mW

25

25

 0.7

 0.6

ETHzürich

 $\overline{4}$