Generating parton-level events from CMS reconstructed

events with Conditional Normalizing Flows
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Matrix element method estimates the probability of a single reconstructed event Y to be Our goal is to model the conditional probability of parton-level events given a reconstructed event using
generated by a physical process defined by 6 parameters: generative machine learning architectures, more specifically normalizing flows:
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Flow models: Machine-learned maps (transformations) between probability distributions
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Pros & Cons:
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v~ It can be used for hypothesis testing or parameter estimation

v’ Maximizes the amount of theoretical information for the discriminator

v~ ltis not bound to a specific process

X Integral computation is very CPU demanding due to jet-parton matching (combinatorial
problem)

X Many approximations used to speedup the computation e.g. jet-parton alignment

‘Base’ distribution ‘Target’ distribution

Previous machine learning (ML) method for solving the problem:
¢ Basic neural network architecture with 4-momenta of the reco-objects as inputs
v" Fast evaluation and inference
X Needs pre-computed MEM values to train the model (time expensive)
X Embeds the approximations from the conventional MEM computation
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Process used: single-lepton channel in ttH(— bb) with an additional radiation Events (X] )

Events details:

e Pileup profile of LHC Run Il (~30-50 simultaneous pp collisions) P : et Tf || ———p Partﬁ,?','ﬁ‘éi,', Trﬁ'gtfal.’sed
e Full CMS detector simulation, including standard RUN Il reconstruction aE\c,):r-,tive ;

Data selection:

o

e Atleast 4 !ets YVIth p_T > 30 G_e\_/ an_d |77 | <24 e*, p* Reco-level — Jets + Lepton + MET : p;, 7, ¢, b-tag score, SPANET output
* Atleast 3 jets identified as originating from a b-quark Yo Yo Events SPANET: ML architecture which predicts jet-parton assignment
e One prompt reconstructed lepton with p, > 30 GeV E
e MET > 20 GeV .
q Regressed : " e
q Parton Event| — >  Higgs + two tops + additional radiation : py, 7, ¢
b
Run Il ttH analysis: MEM used for discriminating between signal and background _
Regress the parton-level event for a given reco-level event
_ _ —» Extracts a latent information vector which conditions the Unfolding Flow
Computation performance: ~ 1 min/event — speedup needed
normalizing flow is a good candidate
v Generates plausible phase-space points compatible with reco-objects
——» ¥ Reduces assumptions on partons’ directions
v Handles events with out-of-acceptance final state objects and
multiple jet multiplicities
Higgs
—>Transformer—> [B, 19, F] —> average —>| [B,F] |— project —{ [B, 3]
RecolLevel Top had
Jets
Lepton — project —Transformer—{ [B, 19, F] —> average —> [B,F] (— project — [B, 3]
MET
} [B, 19, F] —<Transformer —{ [B, 19, F] Top lep
Boost |/ orofect Reco-level Implemented using rational quadratic splines (RQS) with autoregressive blocks
proj —>Transformer— [B, 19, F] —>average —> [B,F] — project — [B, 3] Events
Boost weights still updated during Unfolding Flow training
—>Transformer— [B, 19, F] — average —>| [B,F] — project — [B, 1] Training'
: - : e maximum likelihood: evaluate the density of the
R » The main building block is the Transformer Encoder : y
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Sample 20k parton-level events for one reco-event Sample 30 parton events for 1.5M reco-events

References : ¢ ! i e F AT Super fast (less than 1 second) Check the quality of the sampled partons




