

MiniFIT, the small-scale version of the HERD tracking system, from design to performance

Chiara Perrina for the HERD Collaboration (Chiara.Perrina@epfl.ch)

Annual Meeting of the Swiss Physical Society – September 13, 2024

HERD

- The High Energy cosmic-Radiation Detection facility (HERD) will be the next experiment for the detection of cosmic rays in space.
- HERD will be launched and installed onboard the China Space Station (CSS) in 2027, operational for at least 10 years.

- → Extend the energy range: nuclei to PeV/n,
 e⁻ + e⁺ and γ rays to 100 TeV
 Deep calorimeter: 55 X₀
 (current max: 31 X₀ of DAMPE)
 - Large acceptance: > 2 m²sr
 (current max: 0.02 m²sr of DAMPE)
 - "Isotropic" design with a central 3D calorimeter + other subdetectors on 5 sides.

The HERD detector

https://doi.org/10.1051/epjconf/202328001008

HERD needs a large-area tracker. Operation in space requires compactness, modularity, low power consumption, low material and cost budgets.

CALO: CALOrimeter (55 X₀)

- Energy measurement
- e.m./hadronic separation

FIT: Flber Tracker (5 sides)

- Track reconstruction
- Charge measurement (|Z|)
- Low-energy γ -ray conversion ($\gamma \rightarrow e^+ e^-$)

PSD: Plastic Scintillator Detector (5 sides)

- Charge measurement (|Z|)
- *γ*-ray identification (fast veto < 200 ns)

SCD: Silicon Charge Detector (5 sides)

- Charge measurement (|Z|)
- Track reconstruction

TRD: Transition Radiation Detector (1 side)

• Energy calibration of CALO for TeV nuclei

FIT: modular high-resolution tracker for application in space

FIT module: the fiber mat

- Design of LHCb SciFi
 Fiber mat: 6 layers of fibers
 Fiber type: KURARAY SCSF-78MJ

 round section, diameter = 250 μm
 - Peak at 450 nm
- Mat width ≅ 97.8 mm to match 3
 SiPM arrays

FIT module: the SiPM arrays

Hamamatsu array: 2 chips with 64 SiPMs
23 x 163 pixels/SiPM
Pixel pitch: 10 μm
SiPM size: 230 μm × 1630 μm
SiPM pitch: 250 μm

Breakdown voltage @25 °C: 38 V to 39 V
Overvoltage: 6.5 V
Temperature coefficient: ~ 30 mV/ °C

FIT module: the front-end board (FEB)

- The ASICs in the picture are VATA64HDR16.2 (by IDEAS) (9 mW/channel)
- They will be replaced by the BETA ASICs (1 mW/channel & includes the ADC) developed by the Institute of Cosmos Sciences of the University of Barcelona

FIT Read-out Board (FRB)

FRB: FIT Read-out Board

Power board for the power supply distribution to the FEBs

Logic board for the DAQ and communication with higher levels of DAQ

Flex for interconnection with 7 FEBs

ADC board

MiniFIT

The miniature of a FIT sector.

Layout:

- 7 x-y tracking planes
- 4 x + 4 y FIT modules per tray
- Fiber-mat length: 40 cm.

Goals:

- Test the **tracking** capability of FIT
- Test the charge measurement capability of FIT
- Test the BETA ASIC

BETA ASIC

- ✓ Channels: 64 (PSD version: 16 ch)
- ✓ Event rate: 10 kHz with ADC @ 50 MHz
- ✓ Configurable preamplifer gain: 4 bits
- ✓ Tunable shaping time: 230 ns to 1.5 us
- ✓ Trigger output: < 250 ps time resolution

- **\checkmark** Single photon resolution: SNR > 5 for 10 μ m pixel
- ✓ On chip ADC: Wilkinson 11 bit + 1bit (path sel)
- High Dynamic Range: 15 bit (no saturation for > 3800 fired pixels)
- Dual path: automatic gain switching
- ✓ Slow Digital Control : I2C
- ✓ Power Budget : < 1 mW/ch</p>

First version of BETA ASIC: BETA-16

MiniFIT @beam test 2023

MiniFIT @CERN SPS, Fall 2023

- 4 x + 4 y tracking modules
- Fragmentation ion beam (330 GV/c) created with a beam of lead nuclei (379 GV/c) hitting a 40 mm thick beryllium target.

MiniFIT charge measurement

MiniFIT position resolution

Module x1

The inner modules (x1 and x2) are used to infer the **position resolution** along x, since they have the smallest track extrapolation error.

Conclusions and outlook

- FIT is a modular high-resolution tracker well suited for future spaceborne experiments requiring large-area tracking systems.
- Position resolution of MiniFIT equipped with 4 x-y tracking planes is < 44 μm for normal incident particles.
- MiniFIT demonstrated the charge measurement capability of FIT. Additional studies are ongoing to enlarge the measurement to higher charges.
- We will test MiniFIT in November 2024 at CERN SPS with updated test boards hosting the new BETA-64 ASICs.
- We are updating the FEB design to host the BETA-64 ASICs.

Not in this talk:

- Space qualification of FIT (publication soon)
- Monte Carlo studies demonstrate that FIT meets HERD requirements: angular resolution ~ 0.1° for gamma rays > 10 GeV (<u>https://pos.sissa.it/444/691/</u>)
- SiPM irradiation at Universidad Tecnológica Nacional (Facultad Regional Buenos Aires) (IEEE paper approved for publication)

Thank you!

HERD with current space-borne experiments

Experiment	Energy (e/γ)	Energy (p)	Calorimeter thickness (X ₀)	Angular res. @ 100 GeV (deg)	Δ <i>p/p</i> (e/γ) @ 100 GeV	Δ <i>p/p</i> (protons) > 100 GeV	e/p ID	e acceptance (m ² sr) @ 200 GeV	p acceptance (m ² sr) @ 100 GeV
Fermi-LAT (2008)	< 0.1 GeV – 300 GeV	30 GeV – 10 TeV	8.6	0.1	10%	40%	10 ³	1	< 0.28
AMS-02 (2011)	1 GeV – 1 TeV	1 GeV - 2 TeV	17	0.3	2%	20%	$10^4 - 10^5$	0.05	0.16
CALET (2015)	1 GeV – 10 TeV	50 GeV – 60 TeV	27	< 0.2	2%	30%	10 ⁵	0.1	0.042
DAMPE (2015)	5 GeV – 10 TeV	40 GeV – 300 TeV	32	0.2	< 1.5%	25 - 35%	> 10 ⁵	0.3	0.02
HERD (2027)	10 GeV – 100 TeV 0.5 GeV – 100 TeV (γ)	30 GeV - PeV	55	0.1	< 1%	20%	> 10 ⁶	3	> 2