Data transmission tests of the ATLAS Inner Tracker Detector opto-electrical conversion system.

Time-domain Reflectometer Measurements of The Optosystem Data Transmission Chain

Una Alberti, PhD student at the University of Bern SPS Annual Meeting, Zurich 10.09.2024

The Optosystem

UNIVERSITÄT BERN

- \triangleright For the HL-LHC, the ATLAS Inner Detector will be replaced with the Inner Tracker (ITk)
- ➢ The new ATLAS ITk will require a new optical to electrical conversion system (Optosystem)! *(see: "Tests and results of the power components of the ATLAS Inner Tracker detector readout system." Lucas Mollier, "Performance tests of the ATLAS Inner Tracker Pixel detector opto-electrical conversion system" Marianna Glazewska)*
- \triangleright Electrical signal from the pixel modules is converted to optical signal via the Optoboard. This presentation will focus on testing the quality of data transmission!

The TDR

UNIVERSITÄT BERN

TDR: Time-domain reflectometer

How does it work?

- Sends a pulse signal (with a specified rise time) down the transmission chain under test
- Measures the reflected signals from this pulse
- Calculates impedance and scattering parameter values at each point in the transmission chain

Rise time: Time taken for amplitude of signal to rise for 10% to 90%

 \boldsymbol{u}

1. Impedance Measurements

What is Impedance?

 \triangleright The measure of the opposition that a circuit or a part of a circuit presents to electric alternating current.

Impedance Measurements

- \triangleright Signal is sent from the TDR down the transmission chain at test
- \triangleright We plot impedance as a function of time taken for the signal to propagate down the chain
- \triangleright When signal reaches a boundary between materials (interconnect) with different impedance, the signal reflects

$$
R = \frac{Z_2 - Z_1}{Z_2 + Z_1} \quad [1]
$$

 \triangleright We want to match the impedance across the transmission chain

$$
R = 0 \qquad \Rightarrow Z_2 = Z_1
$$

 \triangleright In this talk we explore these features

Time (ns)

UNIVERSITÄT BERN

Discontinuities

- \triangleright "Discontinues" arise when there is a change in impedance which we cannot resolve.
- \triangleright Spatial resolution is determined by the rise time of the TDR pulse
	- We can resolve a time between two structures of roughly half the rise time of the signal
	- To see impedance:

Time $\langle \frac{1}{2}$ $\frac{1}{2}$ Rise Time (RT

 \triangleright When we test our system, we use the same rise time of ATLAS module $(1.28Gb/s: rise time of $\approx$$ 500ps)

Note: longer rise time means lower frequency. Reactance component of impedance is frequency dependant. This can also change the shape of the discontinuity!

77

Differential Impedance and Coupling

- ➢ Optosystem signal is differential: signal on positive and negative lines measured with respect to each other
- \triangleright If transmission lines are close to each other, differential signal susceptible to coupling

LASXII

- ➢ Coupling affects differential impedance value!
	- Can test for coupling!

11,

Coupling Example

Impedance of Optoboard testing set-up

 \triangleright Setup will be used to test Optoboards (*"Performance tests of the ATLAS Inner Tracker Pixel detector opto-electrical conversion system" Marianna Glazewska, slide 18)*

- ρ Aim: Differential impedance of 100 Ω (be within 10%)
- \triangleright When we test our system, we use the same rise time as ATLAS module $(1.28Gb/s : rise time of $\approx 500ps$)$

Impedance of Optoboard testing set-up

 \boldsymbol{u}

2. Scattering Parameters

UNIVERSITÄT BERN

➢ Scattering parameter (reflection coefficient) is defined by the ratio of the amplitude of the sine waves from the different ports

➢ Measure of frequency dependent loss as signal travels from one material to another (through an interconnect)

k j

- \triangleright S parameters are measured in decibel (dB)
- \triangleright dB value is always a ratio of powers, but we convert this to ratio of voltages

 S_{ik} = Sine wave from port j Sine wave from port k

For a **good** transmission line:

- Small reflection coefficient (S_{21}) = large negative dB
- Transmission coefficient (S_{11}) close to 1 = small negative dB

Scattering parameters

UNIVERSITÄT BERN

Exampe: Simple transmission line

Monotonic drop in transmission coefficient(S_{21}) caused by attenuation. Frequency dependent loss!

Ripples caused by reflections at boundaries

Our module signal is 1.28Gb/s – Our signal is affected!

Frequency dependent loss

Eye diagram

- 385.9 mV 287.1 m 188.3 m\ 89.5 mV $-9.4 \, \text{mV}$ 108.2 m -207 m 305.9 mV 404.7 mV 0_{ps} -260 ps -130 ps 130 ps 260 ps 391 ps 521 ps 651 ps 781 ps 911 ps 1.042 n Eye BER: 4.49−13 Eye width: 512 ps
- Optoboard production testing set-up eye diagram (uplink)

- Data coming from ITk is at 1.28 Gb/s -> a width of 781.35 ps -> signal slightly attenuated
- We aim for our BER limit to be O(10−12) (*"Performance tests of the ATLAS Inner Tracker Pixel detector opto-electrical conversion system" Marianna Glazewska, slide 10)* -> BER criteria satisfied

- \triangleright It is vital to test the quality of data transmission in testing set-ups
- \triangleright Impedance matching is very important in order to minimise losses which can cause jitter
- \triangleright The TDR is a vital apparatus in determining and minimizing losses in optosystem data transmission

Thank you
Any Questions?

UNIVERSITÄT BERN

Complex form: $Z = R + iX$ Resistance Reactance

- ➢ An impedance at a given frequency is represented as a point on the smith chart
- ➢ All points on resistance line have no reactance contribution

Teledyne Lecroy

Smith Chart

 \boldsymbol{u}

UNIVERSITÄT
BERN

 $\mathbf b$

Smith Chart

Smith Chart

- o Smith chart shows impedance as a function of frequency
- o Constant resistance for all frequencies
- o Reactance contribution is changing with frequency

 $\mathbf b$

BERN

UNIVERSITÄT

Back-up

b

➢ Nyquist-Shannon Theorem: sampling rate must be at least twice the band width

- Uplink frequency = 1.38 Gb/s
- \cdot Bandwidth = 0.64 Gb/s

- \triangleright Rise Time = 0.35/BW
	- Rise Time ≈ 550

Coupling Example

 $Z_{\text{diff}} = 2 * Z_{\text{odd}}$ Z_{odd} = impedance of single transmission line when two lines in a pair are driven differential (like a single ended impedance but with effect of coupling)

 $Z_{odd} = Z_{single\,in\,ed}$ if no coupling **occurs between transmission lines**

Single ended and odd impedance is **not** the same -> coupling occurs in the board $Z_{odd} \neq Z_{single}$

How much loss is acceptable?

 \boldsymbol{u}

b

How does S_{11} affect S_{21} \blacktriangleright

- Conservation of energy! \blacktriangleright $1 = S_{11}^{2} + S_{21}^{2} + \text{losses}$
- S_{21} = 0dB for perfect interconnect \blacktriangleright
- Only when S_{11} > -13, S_{21} is affected! \blacktriangleright
- Typically S_{11} < -13 to have little impact on S_{21} and is allowed \blacktriangleright

Impedance of Optoboard setup

 $R = \frac{Z_2 - Z_1}{Z_2 + Z_1} > 0$ Low to high $R = \frac{Z_2 - Z_1}{Z_2 + Z_1} < 0$ High to low \triangleright 50 Ω material \longrightarrow < 50 Ω \longrightarrow 50 Ω

- ➢ Signal of low frequency Len << 1/4 **λ**
- \triangleright High to low : reflecting wave out of phase
- \triangleright Low to high: reflecting wave in phase
- \triangleright S_{11} destructive and S_{21} constructive
- \triangleright So... S_{11} = minimum and S_{21} maximum

UNIVERSITÄT

b

- \triangleright Now increase frequency such that Len =1/4 λ
- \triangleright Following the same principle but now wave travels 1/4 λ

- $\triangleright S_{11}$ constructive and S_{21} destructive
- \triangleright ... S_{11} = maximum and S_{21} minimum

b

- \triangleright Now increase frequency such that Len =1/2 λ
- \triangleright Following the same principle but now wave travels $1/2\lambda$

- $\triangleright S_{11}$ destructive and S_{21} constructive
- \triangleright ... S_{11} = minimum and S_{21} maximum

As frequency increases, ripples arise from construction and destruction of reflected waves!

S parameters and Attenuation

UNIVERSITÄT BERN

 $\boldsymbol{u}^{\textit{b}}$

S parameters and Attenuation

UNIVERSITÄT BERN

S_{21} has 2 main losses: dielectric loss + conductor loss

- \triangleright Dielectric loss:
	- \circ Periodic rotation of dipoles
	- o Higher frequency -> more power dispatched -> attenuation increased

\triangleright Conductor loss:

- \circ Higher frequency- $>$ more inductance contribution
- \triangleright The loss is frequency dependent
- \triangleright High frequency signals attenuate more than low frequency