Data transmission tests of the ATLAS Inner Tracker Detector opto-electrical conversion system.

Time-domain Reflectometer Measurements of The Optosystem Data Transmission Chain

Una Alberti, PhD student at the University of Bern SPS Annual Meeting, Zurich 10.09.2024

The Optosystem

b UNIVERSITÄT BERN

- > For the HL-LHC, the ATLAS Inner Detector will be replaced with the Inner Tracker (ITk)
- The new ATLAS ITk will require a new optical to electrical conversion system (Optosystem)! (see: "Tests and results of the power components of the ATLAS Inner Tracker detector readout system." Lucas Mollier, "Performance tests of the ATLAS Inner Tracker Pixel detector opto-electrical conversion system" Marianna Glazewska)
- Electrical signal from the pixel modules is converted to optical signal via the Optoboard. This presentation will focus on testing the quality of data transmission!

The TDR

^b UNIVERSITÄT BERN

TDR: Time-domain reflectometer

How does it work?

- Sends a pulse signal (with a specified rise time) down the transmission chain under test
- Measures the reflected signals from this pulse
- Calculates impedance and scattering parameter values at each point in the transmission chain

Rise time: Time taken for amplitude of signal to rise for 10% to 90%

UNIVERSITÄT BERN

U,

1. Impedance Measurements

What is Impedance?

> The measure of the opposition that a circuit or a part of a circuit presents to electric alternating current.

Impedance Measurements

- Signal is sent from the TDR down the transmission chain at test
- We plot impedance as a function of time taken for the signal to propagate down the chain
- When signal reaches a boundary between materials (interconnect) with different impedance, the signal reflects

$$R = \frac{Z_2 - Z_1}{Z_2 + Z_1} \quad [1]$$

- ➢ We want to match the impedance across the transmission chain $R = 0 \quad \Rightarrow Z_2 = Z_1$
- In this talk we explore these features

Time (ns)

UNIVERSITÄT BERN

Discontinuities

- "Discontinues" arise when there is a change in impedance which we cannot resolve.
- Spatial resolution is determined by the rise time of the TDR pulse
 - We can resolve a time between two structures of roughly half the rise time of the signal
 - To see impedance:

Time $<\frac{1}{2}$ Rise Time (RT)

When we test our system, we use the same rise time of ATLAS module (1.28Gb/s : rise time of ≈ 500ps)

Note: longer rise time means lower frequency. Reactance component of impedance is frequency dependant. This can also change the shape of the discontinuity!

Differential Impedance and Coupling

60

If transmission lines are close to each other, differential signal susceptible to coupling

> Coupling affects differential impedance value!

Can test for coupling!

100

U

Coupling Example

Impedance of Optoboard testing set-up

Setup will be used to test Optoboards ("Performance tests of the ATLAS Inner Tracker Pixel detector opto-electrical conversion system" Marianna Glazewska, slide 18)

- > Aim: Differential impedance of 100 Ω (be within 10%)
- When we test our system, we use the same rise time as ATLAS module (1.28Gb/s : rise time of ≈ 500ps)

Impedance of Optoboard testing set-up

UNIVERSITÄT BERN

U

2. Scattering Parameters

UNIVERSITÄT BERN

Scattering parameter (reflection coefficient) is defined by the ratio of the amplitude of the sine waves from the different ports

- Measure of frequency dependent loss as signal travels from one material to another (through an interconnect)
- ➤ S parameters are measured in decibel (dB)
- dB value is always a ratio of powers, but we convert this to ratio of voltages

 $s_{jk} = \frac{Sine \ wave \ from \ port \ j}{Sine \ wave \ from \ port \ k}$

For a **good** transmission line:

- Small reflection coefficient (S_{21}) = large negative dB
- Transmission coefficient (S_{11}) close to 1 = small negative dB

Scattering parameters

UNIVERSITÄT BERN

Exampe: Simple transmission line

Monotonic drop in transmission coefficient(S₂₁) caused by attenuation. Frequency dependent loss!

Ripples caused by reflections at boundaries

Our module signal is 1.28Gb/s - Our signal is affected!

Frequency dependent loss

Eye diagram

BERN

• Optoboard production testing set-up eye diagram (uplink)

- Data coming from ITk is at 1.28 Gb/s -> a width of 781.35 ps -> signal slightly attenuated
- We aim for our BER limit to be O(10⁻¹²) ("Performance tests of the ATLAS Inner Tracker Pixel detector opto-electrical conversion system" Marianna Glazewska, slide 10)
 -> BER criteria satisfied

- It is vital to test the quality of data transmission in testing set-ups
- Impedance matching is very important in order to minimise losses which can cause jitter
- The TDR is a vital apparatus in determining and minimizing losses in optosystem data transmission

Thank you Any Questions?

ATLAS	XITk

b UNIVERSITÄT BERN

Smith Chart

Complex form: Z = R + iXResistance Reactance

- An impedance at a given frequency is represented as a point on the smith chart
- All points on resistance line have no reactance contribution
- Points above line have inductive reactance contribution (below have capacitive)

Teledyne Lecroy

Smith Chart

U

UNIVERSITÄT BERN

Ь

Smith Chart

Smith Chart

 Reactance contribution is changing with frequency

Back-up

BERN

b

> Nyquist-Shannon Theorem: sampling rate must be at least twice the band width

- Uplink frequency = 1.38 Gb/s
- Bandwidth = 0.64 Gb/s

- ➢ Rise Time = 0.35/BW
 - Rise Time ≈ 550

Coupling Example

 $Z_{odd} = Z_{single ended}$ if no coupling occurs between transmission lines

Single ended and odd impedance is **not** the same -> coupling occurs in the board $Z_{odd} \neq Z_{single}$

How much loss is acceptable?

U

b

UNIVERSITÄT BERN

- \succ How does S_{11} affect S_{21}
- > Conservation of energy! $1 = S_{11}^2 + S_{21}^2 + \text{losses}$
- > S_{21} = 0dB for perfect interconnect
- > Only when $S_{11} > -13$, S_{21} is affected!
- > Typically $S_{11} < -13$ to have little impact on S_{21} and is allowed

Impedance of Optoboard setup

50 Ω

Low to high $R = \frac{Z_2 - Z_1}{Z_2 + Z_1} > 0$ High to low $R = \frac{Z_2 - Z_1}{Z_2 + Z_1} < 0$ > 50 \Omega material \longrightarrow < 50 \Omega \longrightarrow

- > Signal of low frequency Len << 1/4 λ
- ➢ High to low : reflecting wave out of phase
- Low to high: reflecting wave in phase
- \succ S₁₁ destructive and S₂₁ constructive
- > So... S_{11} = minimum and S_{21} maximum

b

UNIVERSITÄT BERN

b

- > Now increase frequency such that Len =1/4 λ
- > Following the same principle but now wave travels $1/4\lambda$

- \succ S₁₁ constructive and S₂₁ destructive
- \succ ... S_{11} = maximum and S_{21} minimum

b

- > Now increase frequency such that Len =1/2 λ
- \succ Following the same principle but now wave travels $1/2\lambda$

- \succ S₁₁ destructive and S₂₁ constructive
- \succ ... S_{11} = minimum and S_{21} maximum

As frequency increases, ripples arise from construction and destruction of reflected waves!

S parameters and Attenuation

UNIVERSITÄT BERN

 $u^{\scriptscriptstyle b}$

S parameters and Attenuation

UNIVERSITÄT BERN

S_{21} has 2 main losses: dielectric loss + conductor loss

- Dielectric loss:
 - $\circ~$ Periodic rotation of dipoles
 - Higher frequency -> more power dispatched -> attenuation increased

Conductor loss:

- Higher frequency-> more inductance contribution
- The loss is frequency dependent
- > High frequency signals attenuate more than low frequency