## Search for $K^0_{\rm S} \rightarrow \pi^+ \pi^- \mu^+ \mu^-$ decays at LHCb

Luis Miguel Garcia Martin





L.M. Garcia

Search for  $K^0_S 
ightarrow \pi^+\pi^-\mu^+\mu^-$  decays at LHCb



#### Introduction: Why Kaons?

• The  $s \rightarrow d$  process is forbidden at tree level in the SM (suppressed)



• Some exotic BSM scenarios can enhance it by 2 orders of magnitude [arXiV:2201.07805]





#### Introduction: Why Kaons?

• The  $s \rightarrow d$  process is forbidden at tree level in the SM (suppressed)



- Some exotic BSM scenarios can enhance it by 2 orders of magnitude [arXiV:2201.07805]
- LHCb already provided some world best measurements/limits:
  - $\mathcal{B}(K^0_{
    m S} o \mu^+ \mu^-) < 2.1 imes 10^{-10}$  @ 90% CL [PRL125(2020)231801]
  - $\mathcal{B}(K^0_{S(L)} \rightarrow \mu^+ \mu^- \mu^+ \mu^-) < 5.1 \times 10^{-12} (2.3 \times 10^{-9})$  @ 90% CL [PRD108(2023)L031102]
    - First LHCb result with  $K_{\rm L}^0$
  - $\mathcal{B}(\varSigma^+ \to p\mu^+\mu^-) = 2.2^{+1.8}_{-1.3} \times 10^{-8} \ (4.1\sigma) \ [\text{PRL120(2018)221803}]$

#### Challenges: Transverse momentum

Transverse momentum standard handle for signal-bkg separation at LHCb

- Not usable for s decays due to their low energy
- Compensated requiring large flight distance
- B-physics:  $p_{
  m T} \sim$  1-2 GeV/c, FD  $\sim$  1-2 cm
- s-physics:  $p_{
  m T} \sim 0.08\,{
  m GeV}/{\it c},~{
  m FD} \sim {\cal O}(70)\,{
  m cm}$



## Challenges: Trigger

Designed mostly for b and c decays (very low efficiency otherwise)







#### [JHEP05(2019)048]

# Motivation for $K^0_S \rightarrow \pi^+ \pi^- \mu^- \mu^+$

- Very suppressed FCNC in the SM
  - $\mathcal{B}(K^0_{
    m S} 
    ightarrow \pi^+\pi^-\mu^-\mu^+) = 4.69 imes 10^{-14} \; [arXiv:1712.10270]$
  - Little PHSP:  $m_{K^0_{
    m S}}-2m_{\pi}-2m_{\mu}=7.1\,{
    m MeV}/c^2$ 
    - Extra suppression
    - Colinear decay products ( $arepsilon_{ t reco.} \sim 1\%$ )
  - Possible enhancements from BSM
- No measurements yet (No SM prediction for  $\mathcal{B}(K^0_L \to \pi^+ \pi^- \mu^- \mu^+))$



 $\rightarrow \pi^+\pi^-\mu^+\mu^-$  decays at LHCb

Following  $K^0_S \rightarrow \mu^+ \mu^- \mu^+ \mu^-$  strategy [PRD108L031102]

- Goal: Measure/set a limit on B(K<sup>0</sup><sub>S</sub> → π<sup>+</sup>π<sup>-</sup>μ<sup>-</sup>μ<sup>+</sup>)
   If no signal: recompute limit for B(K<sup>0</sup><sub>L</sub>→ π<sup>+</sup>π<sup>-</sup>μ<sup>-</sup>μ<sup>+</sup>)
- Data sample: Run-II (2016-2018)
- Blinded analysis: excluding  $m_{\pi\pi\mu\mu} \in [490, 510] \text{ MeV}/c^2$



Following  $K^0_S \rightarrow \mu^+ \mu^- \mu^+ \mu^-$  strategy [PRD108L031102]

- **Goal:** Measure/set a limit on  $\mathcal{B}(K^0_S \to \pi^+\pi^-\mu^-\mu^+)$ 
  - If no signal: recompute limit for  ${\cal B}({\cal K}^0_{
    m L}\!
    ightarrow \pi^+\pi^-\mu^-\mu^+)$
- Data sample: Run-II (2016-2018)
- Blinded analysis: excluding  $m_{\pi\pi\mu\mu} \in [490, 510] \text{ MeV}/c^2$
- Online selection (trigger):
  - Looking for high- $p_{\mathrm{T}}$  muons from signal ( $arepsilon \sim$  3%)
  - Also looking for high- $p_{
    m T}$  particles in the underlying event ( $arepsilon \sim 10\%$ )

#### • Offline selection:

- Preselection (Rectangular cuts)
- BDT (Machine learning algorithm)

• The branching ratio can be derived counting signal decays:

 $\begin{array}{l} \mathcal{N}(\mathcal{K}^{0}_{\mathrm{S}} \to \pi^{+}\pi^{-}\mu^{-}\mu^{+}) = \\ 2 \times \mathcal{L} \times \sigma_{s\bar{s}} \times f_{\mathcal{K}^{0}_{\mathrm{S}}} \times \mathcal{B} \ (\mathcal{K}^{0}_{\mathrm{S}} \to \pi^{+}\pi^{-}\mu^{-}\mu^{+}) \times \epsilon(\mathcal{K}^{0}_{\mathrm{S}} \to \pi^{+}\pi^{-}\mu^{-}\mu^{+}) \end{array}$ 

• High uncertainty on some terms



• The branching ratio can be derived counting signal decays:

 $\begin{array}{l} \mathcal{N}(\mathcal{K}^{0}_{\mathrm{S}} \to \pi^{+}\pi^{-}\mu^{-}\mu^{+}) = \\ 2 \times \mathcal{L} \times \sigma_{s\bar{s}} \times f_{\mathcal{K}^{0}_{\mathrm{S}}} \times \mathcal{B} \ (\mathcal{K}^{0}_{\mathrm{S}} \to \pi^{+}\pi^{-}\mu^{-}\mu^{+}) \times \epsilon(\mathcal{K}^{0}_{\mathrm{S}} \to \pi^{+}\pi^{-}\mu^{-}\mu^{+}) \end{array}$ 

- High uncertainty on some terms
- Normalization channel:  $\mathcal{K}_{\mathrm{S}}^{0} \rightarrow \pi^{+}\pi^{-} (\mathcal{B} \sim 69\%)$   $\frac{N(\mathcal{K}_{\mathrm{S}}^{0} \rightarrow \pi^{+}\pi^{-}\mu^{-}\mu^{+})}{N(\mathcal{K}_{\mathrm{S}}^{0} \rightarrow \pi^{+}\pi^{-})} = \frac{\mathcal{B}(\mathcal{K}_{\mathrm{S}}^{0} \rightarrow \pi^{+}\pi^{-}\mu^{-}\mu^{+})}{\mathcal{B}(\mathcal{K}_{\mathrm{S}}^{0} \rightarrow \pi^{+}\pi^{-})} \frac{\epsilon(\mathcal{K}_{\mathrm{S}}^{0} \rightarrow \pi^{+}\pi^{-}\mu^{-}\mu^{+})}{\epsilon(\mathcal{K}_{\mathrm{S}}^{0} \rightarrow \pi^{+}\pi^{-})}$ 
  - $\sigma_{s\bar{s}} imes f_{K^0_S} imes \mathcal{B} \ (K^0_S o \pi^+\pi^-) \sim 1 \ \text{event/pp collision}$
  - $\bullet\,$  No need to trigger (using Minimum bias with downscaling  $\sim 10^{-6}$  )

Search for  $K^0_{\Omega} \rightarrow$ 

 $\mu^+\mu^-$  decays at LHCb

• The branching ratio can be derived counting signal decays:

$$\begin{array}{l} \mathcal{N}(\mathcal{K}^{0}_{\mathrm{S}} \to \pi^{+}\pi^{-}\mu^{-}\mu^{+}) = \\ 2 \times \mathcal{L} \times \sigma_{s\bar{s}} \times f_{\mathcal{K}^{0}_{\mathrm{S}}} \times \mathcal{B} \ (\mathcal{K}^{0}_{\mathrm{S}} \to \pi^{+}\pi^{-}\mu^{-}\mu^{+}) \times \epsilon(\mathcal{K}^{0}_{\mathrm{S}} \to \pi^{+}\pi^{-}\mu^{-}\mu^{+}) \end{array}$$

- High uncertainty on some terms
- Normalization channel:  $\mathcal{K}_{S}^{0} \rightarrow \pi^{+}\pi^{-} (\mathcal{B} \sim 69\%)$  $\frac{\mathcal{N}(\mathcal{K}_{S}^{0} \rightarrow \pi^{+}\pi^{-}\mu^{-}\mu^{+})}{\mathcal{N}(\mathcal{K}_{S}^{0} \rightarrow \pi^{+}\pi^{-})} = \frac{\mathcal{B}(\mathcal{K}_{S}^{0} \rightarrow \pi^{+}\pi^{-}\mu^{-}\mu^{+})}{\mathcal{B}(\mathcal{K}_{S}^{0} \rightarrow \pi^{+}\pi^{-})} \frac{\epsilon(\mathcal{K}_{S}^{0} \rightarrow \pi^{+}\pi^{-}\mu^{-}\mu^{+})}{\epsilon(\mathcal{K}_{S}^{0} \rightarrow \pi^{+}\pi^{-})}$

• 
$$\sigma_{s\bar{s}} imes f_{K^0_S} imes \mathcal{B} \ (K^0_S o \pi^+\pi^-) \sim 1 \ \text{event/pp collision}$$

Search for  $K_{\alpha}^{0}$ 

 ${\scriptstyle \bullet}\,$  No need to trigger (using Minimum bias with downscaling  $\sim 10^{-6}$  )

Needs to derive:

- Efficiency (ε): From Simulation
- Yields (N): From mass fits



#### Simulation corrections

Need accurate simulation to train BDT, estimate eff. and mass shapes calibration:

- Observed simulation mismodeling
- Corrected using Data/MC ratio in norm channel
- Corrected using centralized tools



Search for  $K^0_S \rightarrow \pi^+$ 

decays at LHCb

#### Selection strategy: BDT

• Using Gradient Boosted Decision Trees (BDTG) to discriminate

- Signal: Corrected simulation
- Background: Data high-mass side-bands
- Using k-folding (k=6) to avoid overtraining
- BDT cut optimize: Toys to minimize  ${\cal B}$  limit



#### Normalization channel: Armenteros Podoloski plot

Large contribution from  $\Lambda \rightarrow p\pi^-$  decays in  $K^0_S \rightarrow \pi^+\pi^-$  samples Armenteros-Podolanski used to remove it:



$$\left| \left[ \left( \left( \alpha \pm \frac{M_p^2 - M_\pi^2}{M_\Lambda^2} \right) \frac{M_\Lambda \rho_{K_{\mathrm{S}}^0}}{2 \rho^* \sqrt{\rho_{K_{\mathrm{S}}^0}^2 + M_\Lambda^2}} \right)^2 + \frac{\rho_{\mathrm{T}}^2}{(\rho^*)^2} \right] - 1 \right| > 0.3$$

• 
$$\alpha = \frac{p_L^+ - p_L^-}{p_L^+ + p_L^-}$$
  
•  $p^* \equiv \left[ (M_\Lambda^2 - M_P^2 - M_\pi^2)^2 - 4M_P^2 M_\pi^2 \right] / (4M_\Lambda^2)$ 

#### Massfits

Signal described by two Crystal-balls

• All parameters must be fixed due to low expected yield

Comb. background modeled with a phase space function

• Accounts for  $m(\pi^+\pi^-\mu^+\mu^-) \geq 2m(\pi) + 2m(\mu)$ 



Mainly limited by:

- MC Corrections: Searching ways to reduce systematic
- $\bullet\,$  Trigger (L0, HLT) validation: Similar to previous  ${\cal K}^0_{\rm S}$  analyses

| Source                                         | Relative effect (%) |
|------------------------------------------------|---------------------|
| ${\cal B}~(K^0_{ m S}\! ightarrow\pi^+\pi^-)$  | 0.07                |
| sMB                                            | $\lesssim 0.3$      |
| $R_{arepsilon}$                                | 1                   |
| Rec/Sel/Stp/MVA/MC corrections                 | 10.3                |
| $K^0_{ m S}\! ightarrow\pi^+\pi^-$ yield (fit) | $\leq 1$            |
| Muon ID                                        | 2.2                 |
| Tracking                                       | 1.5                 |
| $\varepsilon^{L0}$                             | 24 (TIS), 11 (×TOS) |
| $\varepsilon^{HLT L0}$                         | 13                  |
| Total                                          | $25\lesssim\%$      |

L.M. Garcia

Search for  $\kappa^0_{\rm S} o \pi^+\pi^-\mu^+\mu^-$  decays at LHCb

## Conclusions

#### Combining the results, the expected limit is:

$$\mathcal{B}(K^0_{
m S} 
ightarrow \pi^+\pi^-\mu^+\mu^-)_{
m expected} < 3.54 imes 10^{-10}$$
 .

$$\mathcal{B}(\mathcal{K}_{\mathrm{L}}^{0}\!
ightarrow\pi^{+}\pi^{-}\mu^{+}\mu^{-})_{\mathsf{expected}} < 1.66 imes10^{-7}$$

 $\mathcal{B}(K^0_{\rm S} \to \pi^+\pi^-\mu^-\mu^+)_{\rm SM} = 4.69 \times 10^{-14} \qquad \qquad \mathcal{B}(K^0_{\rm S} \to \pi^+\pi^-\mu^-\mu^+)_{\rm no \ syst.} = 3.72 \times 10^{-10}$ 

#### • LHCb big contributor for neutral kaon results:

- NA48 already analyzed its full dataset
- NA62 features a charged beam

• Aiming to provide results on  ${\cal B}$   $(K^0_{\rm S}\!\to\pi^+\pi^-\mu^+\mu^-)$  by early next year

• Expect more precise results from the upcoming LHCb Run 3

Stay Tuned

FOR something

AWesome

# Thanks for your attention



#### Prospects

The measurement can be improved in Run III (2023-2025):



- More luminosity: Expected factor 2-3 w.r.t Run II
- L0 removed: Expected factor 3 improvement in trigger efficiency
- Using decays after Velo (Downstream) and Magnet (T-Tracks)

- The branching ratio can be derived counting signal decays:  $\begin{array}{l} N(K_{\rm S}^{0} \rightarrow \pi^{+}\pi^{-}\mu^{-}\mu^{+}) = \\ 2 \times \mathcal{L} \times \sigma_{s\overline{s}} \times f_{K_{\rm S}^{0}} \times \mathcal{B} \left(K_{\rm S}^{0} \rightarrow \pi^{+}\pi^{-}\mu^{-}\mu^{+}\right) \times \epsilon(K_{\rm S}^{0} \rightarrow \pi^{+}\pi^{-}\mu^{-}\mu^{+}) \end{array}$ 
  - High uncertainty on some terms
- Using a known (normalization) channel:  $K_{\rm S}^0 \rightarrow \pi^+ \pi^- \frac{N(K_{\rm S}^0 \rightarrow \pi^+ \pi^- \mu^- \mu^+)}{N(K_{\rm S}^0 \rightarrow \pi^+ \pi^-)} = \frac{\mathcal{B}(K_{\rm S}^0 \rightarrow \pi^+ \pi^- \mu^- \mu^+)}{\mathcal{B}(K_{\rm S}^0 \rightarrow \pi^+ \pi^-)} \frac{\epsilon(K_{\rm S}^0 \rightarrow \pi^+ \pi^- \mu^- \mu^+)}{\epsilon(K_{\rm S}^0 \rightarrow \pi^+ \pi^-)}$ 
  - Very abundant at LHCb (  ${\cal B}({\it K}^0_{\rm S}\! 
    ightarrow \pi^+\pi^-)\sim 69\%$  [PDG] )



The PHSP function is defined for a two-particle decay:

- Artificially doing  $K^0_{
  m S} o AB$ , with  $A o \mu^+\mu^-$  and  $B o \pi^+\pi^-$
- $m_A$  and  $m_B$  are free parameters

$$Q(M, m_1, m_2) = \frac{M^4 - 2M^2(m_1^2 + m_2^2) + (m_1^4 + m_2^4) - 2m_1^2 m_2^2}{4M^2}$$
$$f(x, m_A, m_B) = \left(\frac{Q(x, m_A, m_B)}{x}\right)^2 \cdot \left(\frac{Q(m_A, m_\pi, m_\pi)}{m_A}\right)^2 \cdot \left(\frac{Q(m_B, m_\mu, m_\mu)}{m_B}\right)^2$$

 $\rightarrow \pi^+\pi^-\mu^+\mu^-$  decays at LHCb

3 / 8

f

 $m(K_{\rm S}^0)$  not perfectly described in simulation:

- $\bullet\,$  Small downscale ( $\simeq$  0.99875) in the daughters' momenta in simulation
- Corrected using  $K^0_{
  m S} 
  ightarrow \pi^+\pi^-$
- Applied to signal and norm channels



The two trigger categories used in this analysis are defined by

- TIS: LOTIS&&HLTTOS
- ×TOS: L0xT0S&&HLTT0S
- LOTIS : (LOElectron\_TIS|LOPhoton\_TIS|LOHadron\_TIS|LOMuon\_TIS| LODiMuon\_TIS)
- LOTOS: (LOMuon\_TOS|LODiMuon\_TOS|LOMuon,lowMult\_TOS)
- L0xTOS: L0TOS + "&& !" + L0TIS
- HLTTOS: ((Hlt1DiMuonNoL0\_TOS|Hlt1DiMuonLowMass\_TOS)&& Hlt2DiMuonSoft\_TOS)

|                                      | TIS-TOS-TOS     | xTOS-TOS-TOS        |
|--------------------------------------|-----------------|---------------------|
| $arepsilon^{L0 stp}$ (%) MC2017      | $11.409\pm0.64$ | $2.962\pm0.024$     |
| $\varepsilon^{HLT1 L0}$ (%) MC2017   | $13.48\pm0.14$  | $23.18\pm0.35$      |
| $\varepsilon^{HLT2 HLT1}$ (%) MC2017 | $69.32\pm0.52$  | $68.62\pm0.80$      |
| $arepsilon^{trig stp}(\%)$ MC2017    | $1.066\pm0.014$ | $0.4711 \pm 0.0097$ |

#### Selection strategy: Backgrounds

• Potential physical backgrounds:

• 
$$K^0_{
m S} 
ightarrow \mu^+ \mu^- \mu^+ \mu^-$$
 with double  $\mu 
ightarrow \pi$  misID

 $\bullet\,$  Negligible: Peak is 16 sigma away from signal and low  ${\cal B}\,$ 



•  $K_{\rm S}^{0} \to \pi^{+}\pi^{-}e^{+}e^{-}$  with double  $e \to \mu$  misID • Higher  $\mathcal{B}$  but  $\Delta m(e \to \mu) >> \Delta m(\mu \to \pi)$ 

• 
$$K^0_{\rm L} 
ightarrow \pi^+\pi^-\mu^-\mu^+$$

- Small contribution for LHCb (FD < 800 mm)
- Will interpret our result in terms  $K_{\rm S}^0$  and  $K_{\rm L}^0$

#### Selection strategy: Backgrounds

• Potential physical backgrounds:

• 
$$K^0_{
m S} 
ightarrow \mu^+ \mu^- \mu^+ \mu^-$$
 with double  $\mu 
ightarrow \pi$  misID

 $\bullet\,$  Negligible: Peak is 16 sigma away from signal and low  ${\cal B}\,$ 



#### Main background expected to be combinatorial

## Efficiency

Low signal (  $K^{0}_{\rm S}\!\rightarrow\pi^{+}\pi^{-}\mu^{+}\mu^{-})$  efficiency due to:

• Little PHSP  $\implies$  Small opening angle /  $p_{\mathrm{T}}$ 

| Efficiency (%) | $K^0_{ m S}  ightarrow \pi^+\pi^-\mu^+\mu^-$ | $K^0_{ m S}  ightarrow \pi^+\pi^-$ |
|----------------|----------------------------------------------|------------------------------------|
| Gen            | 26.7                                         | -                                  |
| Reco           | 1.13                                         | 1.53                               |
| Strip          | 16.4                                         | 50.4                               |
| LO             | 13.0                                         | -                                  |
| HLT1           | 19.3                                         | -                                  |
| HLT2           | 68.8                                         | -                                  |
| Add Cuts       | 60.5                                         | 96.1                               |
| Classifier     | 58.7                                         | -                                  |
| Total          | $3.04	imes10^{-4}$                           | 0.74                               |

Normalization channels taken from MinBias (No trigger) sample:

- Gen. eff included in Reconstruction
- No trigger requirement (100% efficiency)

- Very strong GIM suppression of top contribution
  - $\lambda^5 \sim 0.0005$  (kaons) vs.  $\lambda^3 \sim 0.01$  (B mesons)
- Generically large QCD enhancements
- Sensitivity to high-scale (non-MFV) dynamics

