Measurement of $\mathcal{B}\left(B^0_{(s)} \to K^0_{\rm S} K^0_{\rm S}\right)$ with Run 2 LHCb data

R. Marchevski¹, <u>K. Guseinov</u>¹, L. M. Garcia Martin¹, Y. Amhis²

¹ École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland ² Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France

SPS annual meeting 11 Sep 2024

Introduction. Flavor-changing neutral currents

- Protons (uud), neutrons (udd), and electrons (e) make up the visible universe nowadays, but many more particles exist
- Fundamental: 6 quarks, 6 leptons, 5 bosons
- Quark transitions: W^{\pm} bosons (and not Z) ۰
- Same guark charges: two W^{\pm} interactions
- Suppression in the SM gives sensitivity to new physics

Feynman diagrams for $K^+ \rightarrow \pi^+ \pi^0$: charged and neutral currents

Standard Model of Elementary Particles

Motivation. $B_s^0 \to K_{\rm S}^0 K_{\rm S}^0$ and $B^0 \to K_{\rm S}^0 K_{\rm S}^0$

B⁰_s → K⁰K⁰ (b → sdd̄) and B⁰ → K⁰K⁰ (b → dss̄) proceed via flavor-changing neutral currents: sensitive to new physics

$$\mathcal{B}\left(B^{0}_{(s)} \to K^{0}_{S}K^{0}_{S}\right) = \frac{1}{2} \mathcal{B}\left(B^{0}_{(s)} \to K^{0}\overline{K}^{0}\right)$$

Motivation. Tensions with the SM

- B_s^0 : measured by Belle [PRL 116, 161801] and then LHCb [PRD 102, 012011] B^0 : measured by Belle [PRD 87, 031103(R)]
- Y. Amhis et al. [2212.03874] discuss a puzzle with

 $\frac{\Gamma\left(B_s^0 \to K^0 \overline{K}^0\right)}{\Gamma(B_s^0 \to K^+ K^-)} = 0.66 \pm 0.13 \quad \left|\frac{V_{td}}{V_{ts}}\right|^2 \frac{\Gamma\left(B_s^0 \to K^0 \overline{K}^0\right)}{\Gamma\left(B^0 \to K^0 \overline{K}^0\right)} = 0.61 \pm 0.13 \quad \frac{\Gamma\left(B^+ \to \pi^+ K^0\right)}{\Gamma(B^0 \to \pi^- K^+)} = 1.12 \pm 0.05$

all of which should be 1 — there is tension with the SM

Motivation. LHCb improvements

- The existing LHCb measurement used 2011–2016 data (L = 5 fb⁻¹)
- Exclusive $B^0_{(s)} \rightarrow K^0_S K^0_S$ trigger introduced in 2017 More than 3.8 times better trigger efficiency
- The current analysis uses 2016–2018 data ($\mathcal{L} = 5.6 \text{ fb}^{-1}$)

Analysis strategy

$$\frac{\mathcal{B}(B^0_s \to K^0_{\rm S} K^0_{\rm S})}{\mathcal{B}(B^0 \to \phi K^0_{\rm S})} = \frac{\frac{N_{B^0_s \to K^0_{\rm S} K^0_{\rm S}}}{N_{B^0 \to \phi K^0_{\rm S}}}{\frac{\varepsilon_{B^0_s \to K^0_{\rm S} K^0_{\rm S}}}{\varepsilon_{B^0 \to \phi K^0_{\rm S}}} \cdot \frac{f_s}{f_d} \cdot \frac{\mathcal{B}\left(K^0_{\rm S} \to \pi^+\pi^-\right)}{\mathcal{B}\left(\phi \to K^+K^-\right)}$$

Choose a normalization decay: many effects cancel in the ratio

- Select normalization decay events
- Implement corrections for the simulation
- Extract normalization yields
- Select signal decay events
- Estimate full efficiency and signal yields
- Study systematic uncertainties
- Extract signal yields

 \leftarrow we are here

Signal and normalization decay topology

Normalization selection

Preselection cuts

- Suppress p, π^{\pm} misidentification as K^{\pm} in $\phi \to K^+ K^-$
- Suppress $\Lambda \to p\pi^-$ misidentification as $K^0_{\rm S} \to \pi^+\pi^-$

Normalization selection

- Preselection cuts
 - Suppress p, π^{\pm} misidentification as K^{\pm} in $\phi \to K^{+}K^{-}$
 - Suppress $\Lambda \to p\pi^-$ misidentification as $K^0_{\rm S} \to \pi^+\pi^-$
- BDT
 - 9 variables

(kinematics, flight distances, distance from *pp* vertices, vertex fit quality)

Signal: simulation

Background: right data sideband

- 8-fold cross-validation
- Separate BDTs for LL, LD

Normalization selection

Preselection cuts

- Suppress p, π^{\pm} misidentification as K^{\pm} in $\phi \to K^+ K^-$
- Suppress $\Lambda \to p\pi^-$ misidentification as $K^0_S \to \pi^+\pi^-$
- BDT
 - 9 variables

(kinematics, flight distances, distance from pp vertices, vertex fit quality)

Signal: simulation

Background: right data sideband

- 8-fold cross-validation
- Separate BDTs for LL, LD

Normalization BDT performance						
	LL	LD				
Signal efficiency	0.8205(5)	0.6930(4)				
Background rejection	$2.17(8) \times 10^{-4}$	$4.65(11) \times 10^{-4}$				
Kerim Guseinov (EPEL) Measureme	at of $\mathcal{B}\left(R^{0} \rightarrow K^{0}K^{0}\right)$ with LHCb	SPS annual meeting 11 Sep 2024	8/13			

Measurement of $\mathcal{B} \left(B_{(s)}^{\circ} \rightarrow K_{S}^{\circ} K_{S}^{\circ} \right)$

Corrections to the simulation

- *B*-meson corrections are already implemented Derived from $B^+ \rightarrow J/\psi K^+$
- Most BDT variables are correctly modeled
- The few that are not will be corrected

Normalization $B^0 o \phi K^0_S$ mass fits

Signal selection

Preselection cuts

- Suppress part of the combinatorial background
- Suppress $\Lambda \to p\pi^-$ misidentification as $K^0_{\rm S} \to \pi^+\pi^-$

Signal selection

Preselection cuts

- Suppress part of the combinatorial background
- Suppress $\Lambda \to p\pi^-$ misidentification as $K^0_{\rm S} \to \pi^+\pi^-$

BDT work in progress

19 variables

(kinematics, flight distances, distance from pp vertices, vertex fit quality)

- Signal: simulation Background: right data sideband
- 8-fold cross-validation
- Separate BDTs for LL, LD, DD

Signal selection

Preselection cuts

- Suppress part of the combinatorial background
- Suppress $\Lambda \to p\pi^-$ misidentification as $K^0_{\rm S} \to \pi^+\pi^-$
- BDT work in progress
 - 19 variables

(kinematics, flight distances, distance from pp vertices, vertex fit quality)

- Signal: simulation
 Background: right data sideband
- 8-fold cross-validation
- Separate BDTs for LL, LD, DD

Signal BDT performance				
	LL	LD	DD	
Signal efficiency	0.5961(23)	0.3032(13)	0.0467(5)	
Background rejection	$1.58(25) \times 10^{-5}$	$2.92(13) \times 10^{-5}$	$8.5(9) \times 10^{-6}$	

$$N_{B^0_s \to K^0_{\mathrm{S}} K^0_{\mathrm{S}}} = N_{B^0 \to \phi K^0_{\mathrm{S}}} \cdot \frac{\varepsilon_{B^0_s \to K^0_{\mathrm{S}} K^0_{\mathrm{S}}}}{\varepsilon_{B^0 \to \phi K^0_{\mathrm{S}}}} \cdot \frac{\mathcal{B}\left(B^0_s \to K^0_{\mathrm{S}} K^0_{\mathrm{S}}\right)}{\mathcal{B}(B^0 \to \phi K^0_{\mathrm{S}})} \cdot \frac{f_s}{f_d} \cdot \frac{\mathcal{B}\left(K^0_{\mathrm{S}} \to \pi^+ \pi^-\right)}{\mathcal{B}(\phi \to K^+ K^-)}$$

$$N_{B^0_s \to K^0_S K^0_S} = N_{B^0 \to \phi K^0_S} \cdot \frac{\varepsilon_{B^0_s \to K^0_S K^0_S}}{\varepsilon_{B^0 \to \phi K^0_S}} \cdot \frac{\mathcal{B}(B^0_s \to K^0_S K^0_S)}{\mathcal{B}(B^0 \to \phi K^0_S)} \cdot \frac{f_s}{f_d} \cdot \frac{\mathcal{B}(K^0_S \to \pi^+\pi^-)}{\mathcal{B}(\phi \to K^+K^-)}$$

Reference
$$N_{B^0_s \to K^0_S K^0_S}$$
 (LL) $N_{B^0_s \to K^0_S K^0_S}$ (LD) $N_{B^0_s \to K^0_S K^0_S}$ (DD) $N_{B^0 \to \phi K^0_S}$ 125 ± 25 240 ± 50 22 ± 4

$$\begin{split} N_{B_s^0 \to K_{\rm S}^0 K_{\rm S}^0} &= N_{B^0 \to \phi K_{\rm S}^0} \cdot \frac{\varepsilon_{B_s^0 \to K_{\rm S}^0 K_{\rm S}^0}}{\varepsilon_{B^0 \to \phi K_{\rm S}^0}} \cdot \frac{\mathcal{B}\left(B_s^0 \to K_{\rm S}^0 K_{\rm S}^0\right)}{\mathcal{B}\left(B^0 \to \phi K_{\rm S}^0\right)} \cdot \frac{f_s}{f_d} \cdot \frac{\mathcal{B}\left(K_{\rm S}^0 \to \pi^+ \pi^-\right)}{\mathcal{B}(\phi \to K^+ K^-)} \\ N_{B_s^0 \to K_{\rm S}^0 K_{\rm S}^0} &= N_{B_s^0 \to K_{\rm S}^0 K_{\rm S}^0} {}^{\mathsf{prev}} \cdot \frac{\varepsilon_{B_s^0 \to K_{\rm S}^0 K_{\rm S}^0}}{\varepsilon_{B_s^0 \to K_{\rm S}^0 K_{\rm S}^0}} \cdot \frac{\mathcal{L}_{2016-2018}}{\mathcal{L}_{2015-2016}} \end{split}$$

Reference
$$N_{B^0_s \to K^0_S K^0_S}$$
 (LL) $N_{B^0_s \to K^0_S K^0_S}$ (LD) $N_{B^0_s \to K^0_S K^0_S}$ (DD) $N_{B^0 \to \phi K^0_S}$ 125 ± 25 240 ± 50 22 ± 4

$$\begin{split} N_{B_s^0 \to K_{\rm S}^0 K_{\rm S}^0} &= N_{B^0 \to \phi K_{\rm S}^0} \cdot \frac{\varepsilon_{B_s^0 \to K_{\rm S}^0 K_{\rm S}^0}}{\varepsilon_{B^0 \to \phi K_{\rm S}^0}} \cdot \frac{\mathcal{B}\left(B_s^0 \to K_{\rm S}^0 K_{\rm S}^0\right)}{\mathcal{B}\left(B^0 \to \phi K_{\rm S}^0\right)} \cdot \frac{f_s}{f_d} \cdot \frac{\mathcal{B}\left(K_{\rm S}^0 \to \pi^+ \pi^-\right)}{\mathcal{B}(\phi \to K^+ K^-)} \\ N_{B_s^0 \to K_{\rm S}^0 K_{\rm S}^0} &= N_{B_s^0 \to K_{\rm S}^0 K_{\rm S}^0} {}^{\mathsf{prev}} \cdot \frac{\varepsilon_{B_s^0 \to K_{\rm S}^0 K_{\rm S}^0}}{\varepsilon_{B_s^0 \to K_{\rm S}^0 K_{\rm S}^0}} \cdot \frac{\mathcal{L}_{2016-2018}}{\mathcal{L}_{2015-2016}} \end{split}$$

Summary

- $\mathcal{B}\left(B^0_{(s)} \to K^0_{\rm S} K^0_{\rm S}\right)$ need more precise measurements
- Their selection efficiency at LHCb has greatly improved
- Good BDT performance for signal and normalization (LL and LD)
- Promising signal yield estimates and sensitivity to $B^0 \to K^0_{\rm S} K^0_{\rm S}$

Summary

- $\mathcal{B}\left(B^0_{(s)} \to K^0_{\rm S} K^0_{\rm S}\right)$ need more precise measurements
- Their selection efficiency at LHCb has greatly improved
- Good BDT performance for signal and normalization (LL and LD)
- Promising signal yield estimates and sensitivity to $B^0 \to K^0_{\rm S} K^0_{\rm S}$

Future work:

- Apply trigger efficiency and other corrections
- Improve normalization mass fits
- Improve the signal BDT (DD)

Summary

- $\mathcal{B}\left(B^0_{(s)} \to K^0_{\rm S} K^0_{\rm S}\right)$ need more precise measurements
- Their selection efficiency at LHCb has greatly improved
- Good BDT performance for signal and normalization (LL and LD)
- Promising signal yield estimates and sensitivity to $B^0 \to K^0_{\rm S} K^0_{\rm S}$

Future work:

- Apply trigger efficiency and other corrections
- Improve normalization mass fits
- Improve the signal BDT (DD)

Thank you!

Backup

Normalization $B^0 \rightarrow \phi K^0_S$ selection

Trigger selection:

- LOHadron, LOGlobal_TIS
- Hlt1(Two)TrackMVA, Hlt1(Phi)IncPhi
- Hlt2Topo(2,3,4)Body, Hlt2(Phi)IncPhi

Loose selection:

- B⁰ DTF converged
- ProbNN_K(K^{\pm}) > 0.02
- Veto on Λ misidentified as $K_{\rm S}^0$: ProbNN_p(π) < 0.1 within the Λ peak

Differences from the previous analysis:

- NO isMuon = False requirement
- No $z_{K_{S}^{0}} z_{B^{0}} > 15 \text{ mm cut}$

Measurement of $\mathcal{B}\left(B^{0}_{(s)} \rightarrow K^{0}_{S}K^{0}_{S}\right)$ with LHCb

Normalization BDT variables (LL)

Normalization BDT variables (LD)

Normalization BDT variables (LL)

Normalization BDT variables (LD)

Normalization BDT response

 $\label{eq:Bkg:m_B0} \begin{array}{l} {\sf Bkg:} \ m_{B^0} > 5400 \ {\sf MeV} \ {\sf data} \\ \\ {\rm 9 \ variables} \qquad & {\rm 8-fold \ cross-validation} \end{array}$

Signal: MC separate for LL, LD

ROC AUC = 0.99084 (LL)

0.97985 (LD)

Normalization BDT cut

• $\mathcal{F} = \frac{\varepsilon_{\text{signal}}}{\sqrt{N_{\text{total}}}}$

- ε_{signal} : determined from MC
- N_{total} : taken directly from data $m_{B^0} \in (5236, 5326)$ MeV 3σ region

Normalization efficiency

Efficiency	2016 (prev)	2016	2017	2018
ε_{gen}	0.1695(16)	0.27126(31)	0.27114(31)	0.27120(30)
ε_{strip}	0.008482(29)	0.008811(10)	0.009788(11)	0.008214(10)
ε_{topo}^{LL}	0.3146(16)	0.3337(6)	0.3071(5)	0.2965(5)
$\varepsilon_{\text{trigger}}^{LL}$	0.9290(16)	0.9136(6)	0.9219(6)	0.9157(6)
ε_{sel}^{LL}	0.9197(17)	0.98482(27)	0.98544(27)	0.98474(28)
ε_{bdt}^{LL}	0.7964(27)	0.8068(9)	0.8286(8)	0.8257(9)
ε_{topo}^{LD}	0.6854(16)	0.6663(6)	0.6929(5)	0.7035(5)
$\varepsilon_{\text{trigger}}^{\text{LD}}$	0.9203(11)	0.9086(4)	0.9160(4)	0.9123(4)
ε_{sel}^{LD}	0.9265(11)	0.98023(21)	0.98050(21)	0.97974(21)
$\varepsilon_{\rm bdt}^{\rm LD}$	0.5339(23)	0.6877(7)	0.6925(7)	0.6976(7)
$\varepsilon_{\text{strip, topo, trig}}^{\text{LL}}$	$2.479(16) \times 10^{-3}$	$2.687(6) \times 10^{-3}$	$2.770(6) \times 10^{-3}$	$2.230(5) \times 10^{-3}$
$\varepsilon_{\text{strip, topo, trig}}^{\text{LD}}$	$5.350(23) imes 10^{-3}$	$5.334(8) imes 10^{-3}$	$6.213(9) imes 10^{-3}$	$5.272(8) \times 10^{-3}$
ε_{total}^{LL}	$2.96(4) imes 10^{-4}$	$5.790(15) imes 10^{-4}$	$6.134(17)\times 10^{-4}$	$4.918(13) \times 10^{-4}$
$\varepsilon_{\text{total}}^{\text{LD}}$	$4.53(5) imes 10^{-4}$	$9.754(21) imes 10^{-4}$	$1.1438(24)\times 10^{-3}$	$9.771(20) \times 10^{-4}$
	adjusted for a	$3.62(4) \times 10^{-4}$	$3.83(4) \times 10^{-4}$	$3.074(31) \times 10^{-4}$
	adjusted for ε_{gen}	$6.09(6) \times 10^{-4}$	$7.15(7) \times 10^{-4}$	$6.11(6) \times 10^{-4}$

Signal $B_s^0 \to K_{\rm S}^0 K_{\rm S}^0$ selection

Trigger selection:

- LOHadron, LOGlobal_TIS
- Hlt1(Two)TrackMVA, Hlt1Phys_TIS
- Hlt2Topo(2,3,4)Body, Hlt2Hb2V0V0Hb2KSKS(LL,LD,DD)

Loose selection:

- Generator-level cuts on $p(B_s^0)$, $p(\pi)$, $p(K_s^0)$, $p_T(K_s^0)$
- B_s^0 DTF converged, $\chi^2_{\text{DTF }B_s^0} < 60$
- $\chi^2_{{\rm IP}\,B^0_s} < 20,\, \tau(B^0_s) > 0,\, \tau(K^0_{\rm S}) > 0$
- Veto on Λ misidentified as K⁰_S: ProbNN_p(π) < 0.1 within the Λ peak

Differences from the previous analysis:

NO isMuon = False requirement

• No
$$z_{K_{\rm S}^0} - z_{B^0} > 15~{\rm mm}~{\rm cut}$$

Measurement of $\mathcal{B}\left(B^{0}_{(s)} \rightarrow K^{0}_{S}K^{0}_{S}\right)$ with LHCb

Signal selection: misreconstructed Λ veto

Veto efficiency: $0.96398^{+0.00025}_{-0.00026}$

Measurement of $\mathcal{B}\left(B^0_{(s)} \rightarrow K^0_S K^0_S\right)$ with LHCb

Signal BDT variables (LL)

Signal BDT variables (LD)

Signal BDT variables (DD)

Signal BDT response

- A bit of overtraining is observed
- BDT for LD and especially DD has to be improved

Signal BDT cut

• ε_{bkg} – background rejection rate for $m_{B_s^0} > 5450$ MeV data

• N_{bkg} – total number of events from data before the BDT within 3σ of B_s^0

Kerim Guseinov (EPFL)

Signal efficiency

Efficiency	2016 (prev)	2016	2017	2018
ε_{gen}	0.1585(4)	0.15878(20)	0.15864(20)	0.15859(20)
$\varepsilon_{\text{strip}}$	0.01245(5)	0.019101(21)	0.019711(21)	0.019753(21)
ε_{topo}^{LL}	0.1799(17)	0.1133(4)	0.11070(34)	0.11034(34)
$\varepsilon_{\text{triager}}^{\text{LL}}$	0.1069(32)	0.1082(10)	0.3039(15)	0.2445(14)
ε ^{LL} εsel	0.715(14)	0.9264(27)	0.9544(12)	0.9500(15)
ε_{bdt}^{LL}	0.598(4)	0.690(5)	0.5517(30)	0.5519(34)
εLD	0.7285(20)	0.4702(6)	0.4678(5)	0.4671(5)
$\varepsilon_{\text{trigger}}^{\text{LD}}$	0.0698(13)	0.0700(4)	0.3181(7)	0.2586(7)
ε ^{LD} εsel	0.772(8)	0.9131(18)	0.9408(7)	0.9388(8)
€LD bdt	0.2295(21)	0.4073(32)	0.2467(12)	0.2597(14)
ε ^{DD} topo	_	0.4164(6)	0.4215(5)	0.4226(5)
$\varepsilon_{\text{trigger}}^{\text{DD}}$	_	0.0 ± 0.0	0.3417(8)	0.2838(8)
ε ^{DD} sel	-	0.0 ± 0.0	0.9471(6)	0.9448(7)
ε_{bdt}^{DD}	_	0.0 ± 0.0	0.0642(7)	0.0719(8)
$\varepsilon_{\text{strip. topo. trig.}}^{\text{LL}}$	$2.40(8) \times 10^{-4}$	$2.342(24)\times 10^{-4}$	$6.63(4) \times 10^{-4}$	$5.328(35)\times 10^{-4}$
$\varepsilon_{\text{strip. topo. trig}}^{\text{LD}}$	$6.33(12) imes 10^{-4}$	$6.29(4) imes 10^{-4}$	$2.933(8) imes 10^{-3}$	$2.385(7) \times 10^{-3}$
$\varepsilon_{\text{strip, topo, trig}}^{\text{DD}}$	-	0.0 ± 0.0	$2.839(8) \times 10^{-3}$	$2.369(7) imes 10^{-3}$
εLL εtotal	$1.62(6) \times 10^{-5}$	$2.377(31) \times 10^{-5}$	$5.54(5) \times 10^{-5}$	$4.43(4) \times 10^{-5}$
$\varepsilon_{\text{total}}^{\text{LD}}$	$1.78(4) \times 10^{-5}$	$3.71(4) \times 10^{-5}$	$1.080(6) \times 10^{-4}$	$9.22(6) \times 10^{-5}$
$\varepsilon_{\text{total}}^{\text{DD}}$	-	0.0 ± 0.0	$2.738(32)\times 10^{-5}$	$2.553(31)\times 10^{-5}$

Kerim Guseinov (EPFL)

Measurement of $\mathcal{B}\left(B^{0}_{(s)} \rightarrow K^{0}_{S}K^{0}_{S}\right)$ with LHCb

Armenteros-Podolanski variables and plot

