

SciFi and DAQ Status Report of the Mu3e Experiment

SPS annual meeting 2024

Yifeng Wang 10.09.2024

135

Schedule

Mu3e detector overview

See Thomas Senger's talk

Mu3e detector overview

Yifeng Wang – ETH Zürich

SciFi detector overview

Connection

Cross-section of fiber ribbon end (stagged 4 layers of fiber)

SiPM array (Hamamatsu S13552)

Fiber attaching to SiPM

$\mathsf{SMB} \Leftrightarrow \mathsf{uTP} \ \mathsf{cable}$

SMB PCB footprint

Interposer

uTP cable

connector PCB

Calibration and pre-installation quality control

SiPM QC

Figure of DRS4 measured SiPM 1-ph waveform (for illustration only)

MuTRiG Calibration (Threshold)

2) Measure TTH scan => threshold for TDC

Demo of TTH scan; TTH (x) vs event rate (y) of single ch of MuTRiG

MuTRiG Calibration (Simulation)

€ (efficiency) := max readout speed / tot hit(signal+DC)

 $\pi^{(\text{purity})}$:= signal hit ref / signal rate with injection

Dose DCR/ch	DCR / ch	E	π	Reduction ratio	Event rate / ASIC
start 10kHz	0	100%	1 (ref)	0.798	6.77 MHz
	<mark>100k</mark>	100%	99.4%	0.577	6.81 MHz
	500k	100%	94.0%	0.292	7.20 MHz
	1M	100%	<u>82.4%</u>	0.201	8.21 MHz
1MHz	2M	100%	56.9%	0.163	11.9 MHz
end $(Expected DCR full dose) = 6.25 MHz$	3M	100%	38.3%	0.168	17.7 MHz
	4M	<u>98.1%</u>	26.6%	0.186	25.5 MHz
Expected dose on SiPM	5M	71.1%	19.2%	0.208	35.2 MHz
and inflected DCR	6M	53.6%	14.5%	0.231	46.6 MHz
	<u>7M</u>	41.9%	11.3%	0.255	59.7 MHz
	8M	33.6%	9.03%	0.280	74.5 MHz
	9M	27.5%	7.45%	0.305	90.8 MHz

Simulation condition: 1 neighboring – 6.4 ns – 0p5⁸

FPGA firmware design methodology

Background

- LE density: from 90nm to 10nm, ٠ logic density in FPGA increased exponentially.
- Route-ability: Global routing do not • scale well! => long compilation time (hrs+) and low fmax
- Design practice: no global async reset => local sync reset

Adde

Full Adde

Adaptiv LUT

5

FPGA firmware design methodology

Drawback

- **Fixed hierarchy**: no elaboration callback to pass information from bottom to top.
- No explicit boundary: rely on the practice of individual programmer. Gate clustering.
- Hard to interconnect: large number of combinational wires mapped to global wires.
- **Pipelining global wires:** not trivial, manual and fluctuates depending on the random seeds.

Number of combinational connections (wires)

FPGA firmware design methodology <u>Goal</u>

- **System integration tool**: flexible and dynamic configuration.
- **Design partition**: confine designs into small islands and interconnect them.
- Interoperability: fine-granularity version control and block design.

System Integration with RTL as black-box and scripting lang. (tcl, python, etc) for configuration and dynamic port connection.

SPS Annual Meeting 2024

Gate clustering! => extreme compilation time and timing-violation

FPGA firmware design methodology

Solutions

- Network-On-Chip (NOC) interconnect
 - Packetized transaction
 - Channelized
 - Router-based (pipelined)
 - Handshaking
 - Benefit from Vendor's existing
 interconnect

Master <-> interconnect communication

Avalon® Interface Specifications - Intel

- Designs are interconnected by NoC
- Data transfer are localized (master<->NoC, NoC<->slave)
- Pipelined for optimal placement and routing

Packet across designs (inter-FPGA or within FPGA)

Mu3e Spec Book – Mu3e collaboration

FPGA firmware design methodology

Solutions

- IP packing / wrapping
 - Black-boxed small set of RTL files
 - Expose standard Interface (AXI4 or Avalon) for NoC you chose
 - Individual version control as git submodule
 - Interplay across FPGA and systems
 - Easy-for-verification (BFM)

Mu3e IP Library • 20+ IP cores (increasing...) open-sourced

IP List

Fully verified on-fpga

IP Name	IP Description	Status
Slow- Control Hub	Translate the Mu3e Slow-Control packet into Avalon Memory-Mapped transations.	Release
Onewire Temperature Sensor Controller	Periodically read the temperature sensor with 1-Wire protocol.	Release
MuTRiG Frame Deassembly	Dismantle the MuTRiG frame into header and hits. Derive individual hit error and frame CRC error .	Release
CAM (Content Addressable Memory)	Primitive of CAM. Use an template for user to construct their own complex system. For example, build a CPU-cache, bookkeeping roster, correlator, IP- address to MAC address decoder, etc	Minor Debug
MuTRiG Timestamp Processor	Process the timestamp of the MuTRiG (i.e. tracking overflow and mapping MuTRiG timestamp to Global timestamp)	Release
Histogram Statistics	Build histogram with update/filter key from selected data segment. Snoop on the data stream. High-performace: SAR bin-calculation and DP-RAM counter.	Release
MuTRiG Controller	Perform SPI configuration of the attached MuTRiG(s) and automatically scan the T-Threshold values (use their last configs). Scan results for all channels are stored locally.	Release
Charge Injection	Generate digital pulse with arbitary frequency and duration. Use in pair with correct hardware (e.g. DAB2.1 or older for TDC injection or DAB2.2 or newer for TDC and analog injection). Targeted to functionally verify the MuTRiG given the test pulse.	Release
Altera Temperature Sensor	Interfacing with the official alt_temp_sense IP on 28 nm device. Store the last result. Can be halted	Release

Unique IPs

13

Back up

7.1 Examples of simple transactions

Examples of simple transactions help to explain the relationships between the different AXI channels.

The following diagram shows a time representation of several valid transactions on the five channels of an AXI3 or AXI4 interface:

The different transactions in this example are as follows:

1. Transaction A, which is a write transaction that contains four transfers.

The master first puts the address A on the AW channel, then soon puts the sequence of four data transfers on the W channel, ending with AL where L stands for last.

Once all four data transfers complete, the slave responds on the B channel.

2. While transaction A was occurring, the master also used the read channels to perform a read transaction, C, which contains two transfers.

Yifeng Wang – ETH Zürich

Yifeng Wang D-PHYS yifenwan@phys.ethz.ch

ETH Zürich Inst. f. Teilchen- und Astrophysik HPK E 25 Otto-Stern-Weg 5 8093 Zürich Switzerland