

The n2EDM experiment

A search for new physics at the precision frontier

2024.09.11, SPS annual meeting 2024

Wenting Chen, on behalf of the nEDM collaboration

Big Puzzel: Baryon Asymmetry

Expect (derived from SM): $\eta = \frac{n_B - n_{\overline{B}}}{n_{\gamma}} \approx 10^{-18}$ But observed asymmetry: $\eta \approx 6 \cdot 10^{-10}$?!

Sakharov conditions

- Baryon number violation
- C & CP-symmetry violation
- Thermal equilibrium

Now: $\eta \approx 6 \cdot 10^{-10}$

Start from Big bang:

$$\eta =$$

0

Anti-

Electric dipole moment violates CP symmetry

In non-relativistic regime:

$$H_{mag} \sim \vec{\mu} \cdot \vec{B} \sim \mu \left(\vec{S} \cdot \vec{B}\right)$$

$$TH_{mag} = H_{mag}$$

$$H_{el} \sim \vec{d} \cdot \vec{E} \sim d \left(\vec{S} \cdot \vec{E}\right)$$

$$TH_{el} \neq H_{el}$$

$$H_{el} = H_{el}$$

$$TH_{el} \neq H_{el}$$

$$H_{el} = H_{el}$$

(Potential) Sources of EDM

SM:

- CKM contribution $\rightarrow d_{\rm n} \sim 10^{-32} \ e \cdot {\rm cm}^{\rm [2,3]}$
- QCD $\overline{\theta}$ term \checkmark

```
 \begin{vmatrix} d_{n} \sim \bar{\theta} \cdot 10^{-16} \ e \cdot cm \\ |d_{n}| < 10^{-26} \ e \cdot cm \ ^{[1]} \\ \rightarrow \bar{\theta} < 10^{-10}, \text{ very small} \\ \rightarrow \text{``Strong CP problem''}
```

BSM:

 New physics models @ TeV scale predict sizable EDMs. (SUSY ^[4], 2Higgs ^[5] ...)

[5] K. Cheung et al, Phys. Rev. D 102, 075029 (2020)

How to measure d_n : measure f_n Ŕ Frequency as observable $\rightarrow f_n = \frac{\mu_n}{\pi\hbar} B \pm \frac{d_n}{\pi\hbar} E$ n \vec{E} \vec{B} UCN

How to measure d_n : Ramsey method

Sensitivity:
$$\sigma(d_n) = rac{\hbar}{2\alpha E T \sqrt{N}}$$

Ramsey Asymmetry Plot

Counting N_{\uparrow} , N_{\downarrow} and get asymmetry:

$$A = \frac{N_{\uparrow} - N_{\downarrow}}{N_{\uparrow} + N_{\downarrow}}$$

as a function of applied RF frequency $f_{\rm RF}$ ($\Delta \nu = \frac{1}{2T + 8t_{\rm RF}/\pi}$):

$$A \approx -\alpha \cos\left[\pi \frac{f_{\rm RF} - f_{\rm n}}{\Delta \nu}\right]$$

The journey of UCNs: detection

- Spin-analysis: Magnetized foils filter out polarized neutrons.
- UCN counted by 4 detectors filled with ³He & CH₄ gas. $n + {}^{3}He \rightarrow p + {}^{3}H$ causes scintillation of CH₄ Light detected by PMTs

Magnetic field stability

$$f_{\rm n} = \frac{\mu_{\rm n}}{\pi\hbar} B \pm \frac{d_{\rm n}}{\pi\hbar} E$$

Small, stable $B \sim 1 \mu T (f_{n,B} \sim 27 \text{ Hz})!$

Magnetic field control

Reduce \overrightarrow{B}_{bkg} using passive and active methods

- MSR shields \vec{B}_{bkg} : Size: $4.2 \times 5.2 \times 5.2 \text{ m}^3$
- AMS compensates $\delta \vec{B}_{bkg}$ using actively-controlled coils. $\vec{B} = M \vec{I} + \vec{B}_{bkg}$

Monitor \overrightarrow{B} with magnetometers:

- ¹⁹⁹Hg co-magnetometer
- Cs magnetometers Talk V. Kletzl at 15:15

Monitor \overrightarrow{B} & $\Delta \overrightarrow{B}$: ¹⁹⁹Hg co-magnetometer

An optically pumped magnetometer using $^{199}{\rm Hg}$ $|d_{\rm Hg}| < 7.4 \times 10^{-30}~e\cdot{\rm cm}^{[1]}$

$$f_{\rm Hg} = \left| \frac{\gamma_{\rm Hg}}{2\pi} B \right| \sim 7 \; {\rm Hz}$$

Polarize Hg atoms using UV light

Monitor \overrightarrow{B} & $\Delta \overrightarrow{B}$: ¹⁹⁹Hg co-magnetometer

An optically pumped magnetometer using $^{199}{\rm Hg}$ $|d_{\rm Hg}| < 7.4 \times 10^{-30}~e\cdot{\rm cm}$ [1]

$$f_{\rm Hg} = \left| \frac{\gamma_{\rm Hg}}{2\pi} B \right| \sim 7 \; {\rm Hz}$$

Probe Hg spin precession with UV light

13

Monitor \overrightarrow{B} & $\Delta \overrightarrow{B}$: ¹⁹⁹Hg co-magnetometer

An optically pumped magnetometer using ¹⁹⁹Hg $|d_{\rm Hg}| < 7.4 \times 10^{-30} \ e \cdot {\rm cm}^{[1]}$

$$f_{\rm Hg} = \left| \frac{\gamma_{\rm Hg}}{2\pi} B \right| \sim 7 \; {\rm Hz}$$

Challenge: require > 30 m of UV delivery (free-space + fiber)

Monitor $\vec{B} \& \Delta \vec{B}$: ¹⁹⁹Hg co-magnetometer \Im

 $f_{\rm Hg}$ extracted by fitting or through demodulation analysis

Polarizing Hg spin Injection Spin flip

Free precession

Provide E: approaching 180 kV!

$$\sigma(d_{\rm n}) = \frac{\hbar}{2\alpha E T \sqrt{N}}$$

	n2EDM requirements	
$\sigma(d_{ m n})$ final	$1.1 \times 10^{-27} e \cdot cm$	
N (per cycle)	12100	
α	0.8	
T	180 s	
E	15 kV/cm	

requires $E \sim 15 \frac{\text{kV}}{\text{cm}} \sim \frac{180 \text{ kV}}{12 \text{ cm}}$

Recent achievements $\sigma(d_n) = \frac{\hbar}{2\alpha ET\sqrt{N}}$

Backup

CP violation sources and EDMs

Time	ID	Chair: Michel Calame, Empa & Universität Basel
16:30	8	Wave-particle duality in atom interferometers: pre- cision measurements at the quantum limit Philipp Treutlein (p)

Ramsey Interferometers

[1] L. Pezzè et al, Rev. Mod. Phys. 90, 035005 (2018)

 $[\]theta$ rotation around the y axis

The journey of UCNs: production

The journey of UCNs: detection

Monitor \vec{B} and more gradients: Cs magnetometer

Talk V. Kletzl at 15:15

Cs cell production

Plan to mount an array of 112 Cs cells on plates

Hg magnetometer: motivation

Hg atoms also precess: $f_{\text{Hg}} = \left| \frac{\gamma_{\text{Hg}}}{2\pi} B_0 \right|$ (electric term negligible)

 \Rightarrow allow us to cancel the magnetic field drifts!

Use a ratio
$$R_{\mp} = \frac{f_{n,\mp}}{f_{Hg}} = \left|\frac{\gamma_n}{\gamma_{Hg}}\right| \mp \frac{|E|}{\pi \hbar f_{Hg}} d_n$$

Then extract
$$d_n = \frac{\pi \hbar \langle f_{\text{Hg}} \rangle}{2|E|} (R_+ - R_-)$$

Hg magnetometer: data extraction

Use UV laser to spin-polarize the ¹⁹⁹Hg atoms.

Release the polarized atoms into precession chambers.

Apply oscillating field $\overrightarrow{B_{xy}}$ to flip the ¹⁹⁹Hg spin by 90°.

Probe the precession of ¹⁹⁹Hg atoms by laser.

Light absorption cross-section depends on the orientation of ¹⁹⁹Hg spin and the light propagation.

Hg magnetometer: beam delivery

One cycle for UCN

One cycle for UCN & Hg

Use Ramsey method to measure $f_{n,\uparrow\uparrow}$, $f_{n,\uparrow\downarrow}$

Field stability – chamber difference

The drift of magnetic field difference

$$f_{\rm n}^{\rm top} - f_{\rm n}^{\rm bot}$$
 over 17h

