

A high-sensitivity Cesium magnetometer array for the n2EDM experiment

Victoria Kletzl

SPS Annual Meeting, 11 September 2024

Simultaneous measurement of:

 $f_{n,\uparrow\downarrow}$ and $f_{n,\uparrow\uparrow}$

• UCN

¹⁹⁹Hg atom

• UCN

¹⁹⁹Hg atom

3

• UCN

¹⁹⁹Hg atom

Simultaneous measurement of:

 $f_{n,\uparrow\downarrow}$ and $f_{n,\uparrow\uparrow}$

¹⁹⁹Hg magnetometer allows for cancellation of drifts in $\overrightarrow{B_0}$ via:

$$\mathcal{R} = \frac{f_n}{f_{\rm Hg}}$$

¹⁹⁹Hg atom

5

The d^{false} effect

٠

6

$$\vec{B}_m = \vec{E} \times \frac{\vec{v}}{c^2}$$

- If $\vec{B}_0 \neq$ uniform $\rightarrow d^{\text{false}}$ for neutrons and ¹⁹⁹Hg comagnetometer
- d^{false} for neutrons and Hg are not the same due to different velocities and precession frequencies!

	Neutrons	¹⁹⁹ Hg
RMS velocity	few m/s	≈ 150 m/s
Larmor frequency	≈ 27 Hz	$\gamma_{\rm Hg} \left \vec{B} \right \approx 7 \rm Hz$

The d^{false} effect

• $d_{\text{Hg} \rightarrow n}^{\text{false}}$ can be of order $10^{-27} e \text{cm}$!

• Control magnetic field gradients using an additional magnetometer array

Gradient control using Cesium magnetometer array!

7

PSI

Optically pumped magnetometers

PSI

- Wavelength = 894 nm (D_1 line)
- Linear polarization π
- spin populations in high $|m_F|$ = spin alignment
- Observed precession frequency: $2\omega_L = 7 \text{ kHz}$

π

 σ^+

 m_F

 $6^2 S_{1/2} F = 4$

Cs Magnetometer array @ n2EDM

- Total of 112 Cs cells on 28 plates
 higher order gradients
- Placement accuracy: ±0.5 mm
- Relative field accuracy: 5 pT

Pais, D., DISS. ETH NO. 27742, 2021.

Single Cs magnetometer plate

Requirements:

- Non-magnetic
 - ➤ <0.116 nAm²
 - ➢ 5 pT @ 2 cm
- Vacuum compatible

The solution: MACOR

Cs magnetometer prototype

Testing magnetometric accuracy - setup

Testing magnetometric accuracy – measurement scheme 깃

Use fixed magnetometers to cancel common drift

• Calculate offset to reference cell on rotation table

Determining the magnetometric accuracy

Conclusion

- Required relative accuracy shown for first cells
- Assembly of first prototype array ongoing
- Commissioning runs of prototype in late 2024
- Commissioning of full array in 2025

Back up slides

17 PSI Center for Neutron and Muon Sciences

Detecting magnetic contamination

Expected dipole signal

Mapping the magnetic field

Mapping the magnetic field

