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Semiconductor Pixel Detector Structures
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Single Photon Counting for X-Ray Imaging

Credits: MARS Bioimaging Ltd

Detection of individual X-ray photons

• Suppression of detector noise

• Measurement of the photon energy

• Enables X-ray color imaging

See recent summary presentation from the 7th SpecXray workshop
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High-Z Materials for X-Ray Imaging
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Wafer-Wafer Bonded Particle Detectors
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Silicon

Readout
Chip

Absorber

Bonding
Interface

• Goal is to build hetero-structure detectors.
– Absorber is bonded to fully processed CMOS wafer.
– Bonding needs to be CMOS compatible (temperature).

• Signal is generated in the absorber and detected in the CMOS bulk.
– The bonding interface needs to be electrically conductive.
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Surface Activated Wafer Bonding (SAB)

Ar Beam

Activated Bonds

Wafer A

Wafer B

Amorphous
Layer

Bonding Pressure

Wafer

Contamination

Oxidation

Pioneered by Takagi et. al in 1996 [1]

• In ultra-high vacuum (5 × 10−8 mbar)

• Processing at room temperature

• Needs polished surfaces (roughness < 0.5 nm)
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Amorphous Interface with SAB

Credits: G-Ray Medical Sàrl

• Amorphous layer due to Ar sputtering

• High local density of crystal defects

• Influence on detector signal was unknown

How does the amorphous layer influence signal generation / collection in wafer-wafer bonded sensors?
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Fabrication of Simple Bonded Diodes

Processed at the ETHZ/IBM Binnig and Rohrer Nanotechnology Center and external companies.

N-Type Wafer N-Type Implant P-Type Wafer P-Type Implant Metal Layers

Diode Contact Guard Rings

Bonding
Interface

Wafer A
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Diode Contact

• Using high-resistivity (float-zone) wafers

• Bonding silicon to silicon

Fabricated Diodes
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Bonded Pad Diode Fabrication Runs

Run 2 (2022)

STEM Imaging
Scanning transmission electron microscopy
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Bonded Pad Diode Fabrication Runs

Run 2 (2022)

EDXS (Iron K-Line)
Energy dispersive x-ray spectroscopy
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Bonded Pad Diode Fabrication Runs
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Transient Current Technique (TCT)
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Edge-TCT Measurements

Bonding Interface
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Edge-TCT Measurements

Run 2

• Only the P-side of the bonded structure is depleting.

• This implies that the interface acts as highly N++
doped layer.

• Due to the metal contamination of Run 2 it is not clear
if this is an intrinsic effect of the interface.

Wüthrich et al. 2022 JINST 17 C10015 [2]
Wüthrich et al. 2023 JINST 18 P05004 [3]
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Run 3

• Run 3 shows the same one-sided behaviour as Run 2!

• But Run 3 does not show any detectable metal
contamination.

• This indicates that the bonding interface has an
intrinsic N++ behaviour!

Run 3
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Time Domain TCT Signal (Shockley-Ramo Theorem)
Run 2 TCT Signal
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Note: Laser intensity is unknown.
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Extended Shockley-Ramo Theorem

The Shockley-Ramo theorem [4, 5] is (strictly)
only valid for

• charges moving in a vacuum,

• and signals induced on grounded
electrodes.

I(t) = q~vq (~x) · ~WF (~x)

It can be shown that it is also valid for

• fully depleted semiconductor detectors,

• and for non-grounded electrodes.

N

N++ 

P
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I(t) = q~vq (~x) · ~WF (~x)

It can be shown that it is also valid for

• fully depleted semiconductor detectors,

• and for non-grounded electrodes.

W. Riegler [6] developed an extension to the Shockley-Ramo theorem
for detectors with resistive (non-zero conductivity) elements:

I ind
e,h (t) = −

qe,h

V0

∫ t

0

~WV [~xe,h(t ′), t − t ′]~ve,h(t ′)dt ′

The weighting vector ~WV represents the detector response when
applying a voltage Dirac pulse δ(t)V0 to the readout electrode of
interest.

• Can be calculated analytically for simple 1D-like structures.

Johannes Wüthrich 2024-09-10 13



Time Domain TCT Signal (Extended Shockley-Ramo Theorem)
Run 2 TCT Signal
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Conclusions

How does the amorphous layer influence signal generation / collection in wafer-wafer bonded sensors?

• Fabrication of simple bonded test structures
– Run 2 with metal contamination at the interface
– Run 3 without detectable metal contamination (preliminary)

• The fabricated samples show a one-sided depletion behaviour.
– This is independent of the presence of metal contamination (preliminary)
– This indicates a N++ behaviour of the bonding interface (preliminary)

• Time domain signals can accurately be predicted from first principles.
– This enables the prediction of the behaviour of more complex bonded

detectors.
– Simulation of charge sharing in strip detectors potentially allows to probe the

defect density at the interface.

• The main influence of the bonding interface seems to be on the depletion
behaviour.
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Thank you very much for your attention.
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