

Results from low temperature wafer-wafer bonded pad-diodes for particle detection

SPS Annual Meeting 2024

Johannes Wüthrich Rubbia Group – Institute for Particle Physics and Astrophysics – ETHZ Semiconductor Pixel Detector Structures

Semiconductor Pixel Detector Structures

Single Photon Counting for X-Ray Imaging

Credits: MARS Bioimaging Ltd

Detection of individual X-ray photons

- Suppression of detector noise
- Measurement of the photon energy
- Enables X-ray *color* imaging

See recent [summary presentation from the 7th SpecXray workshop](https://indico.cern.ch/event/1391821/)

High-Z Materials for X-Ray Imaging

Based on data from NIST XCOM

High-Z Materials for X-Ray Imaging

Based on data from NIST XCOM

Based on data from NIST XCOM

Wafer-Wafer Bonded Particle Detectors

- Goal is to build hetero-structure detectors.
	- **–** Absorber is bonded to fully processed CMOS wafer.
	- **– Bonding needs to be CMOS compatible (temperature).**

Wafer-Wafer Bonded Particle Detectors

- Goal is to build hetero-structure detectors.
	- **–** Absorber is bonded to fully processed CMOS wafer.
	- **– Bonding needs to be CMOS compatible (temperature).**

Wafer-Wafer Bonded Particle Detectors

- Goal is to build hetero-structure detectors.
	- **–** Absorber is bonded to fully processed CMOS wafer.
	- **– Bonding needs to be CMOS compatible (temperature).**
- Signal is generated in the absorber and detected in the CMOS bulk.
	- **– The bonding interface needs to be electrically conductive.**

Surface Activated Wafer Bonding (SAB)

Pioneered by Takagi et. al in 1996 [\[1\]](#page-31-0)

- In ultra-high vacuum (5×10^{-8} mbar)
- Processing at room temperature
- Needs polished surfaces (roughness *<* 0.5 nm)

Amorphous Interface with SAB

Credits: G-Ray Medical Sàrl

- Amorphous layer due to Ar sputtering
- High local density of crystal defects
- Influence on detector signal was unknown

Amorphous Interface with SAB

Credits: G-Ray Medical Sàrl

- Amorphous layer due to Ar sputtering
- High local density of crystal defects
- Influence on detector signal was unknown

Fabrication of Simple Bonded Diodes

- Using high-resistivity (float-zone) wafers
- Bonding silicon to silicon

Fabrication of Simple Bonded Diodes

Processed at the ETHZ/IBM Binnig and Rohrer Nanotechnology Center and external companies.

- Using high-resistivity (float-zone) wafers
- Bonding silicon to silicon

Fabricated Diodes

Bonded Pad Diode Fabrication Runs

Run 2 (2022)

STEM Imaging Scanning transmission electron microscopy

Bonded Pad Diode Fabrication Runs

Run 2 (2022)

EDXS (Iron K-Line) Energy dispersive x-ray spectroscopy

Bonded Pad Diode Fabrication Runs

Run 2 (2022)

EDXS (Iron K-Line) Energy dispersive x-ray spectroscopy

Run 3 (2024)

EDXS (Iron K-Line) Energy dispersive x-ray spectroscopy

Transient Current Technique (TCT)

Edge TCT

Biasing and Signal Acquisition

Transient Current Technique (TCT)

Edge TCT

Edge-TCT Measurements

Edge-TCT Measurements

Run 2

- Only the P-side of the bonded structure is depleting.
- This implies that the interface acts as highly N++ doped layer.
- Due to the metal contamination of Run 2 it is not clear if this is an intrinsic effect of the interface.

Wüthrich *et al.* 2022 *JINST* 17 C10015 [\[2\]](#page-31-1) Wüthrich *et al.* 2023 *JINST* 18 P05004 [\[3\]](#page-31-2)

Edge-TCT Measurements

Run 2

- Only the P-side of the bonded structure is depleting.
- This implies that the interface acts as highly N++ doped layer.
- Due to the metal contamination of Run 2 it is not clear if this is an intrinsic effect of the interface.

Wüthrich *et al.* 2022 *JINST* 17 C10015 [\[2\]](#page-31-1) Wüthrich *et al.* 2023 *JINST* 18 P05004 [\[3\]](#page-31-2)

Run 3

- Run 3 shows the same one-sided behaviour as Run 2!
- But Run 3 does not show any detectable metal contamination.
- This indicates that **the bonding interface has an intrinsic N++ behaviour**!

Time Domain TCT Signal (Shockley-Ramo Theorem)

Run 2 TCT Signal

Extended Shockley-Ramo Theorem

The Shockley-Ramo theorem [\[4,](#page-31-3) [5\]](#page-31-4) is (strictly) only valid for

- charges moving in a vacuum,
- and signals induced on grounded electrodes.

 $I(t) = q \vec{v}_q(\vec{x}) \cdot \vec{W}_F(\vec{x})$

It can be shown that it is also valid for

- fully depleted semiconductor detectors,
- and for non-grounded electrodes.

Extended Shockley-Ramo Theorem

The Shockley-Ramo theorem [\[4,](#page-31-3) [5\]](#page-31-4) is (strictly) only valid for

- charges moving in a vacuum,
- and signals induced on grounded electrodes.

 $I(t) = q \vec{v}_q(\vec{x}) \cdot \vec{W}_F(\vec{x})$

It can be shown that it is also valid for

- fully depleted semiconductor detectors,
- and for non-grounded electrodes.

W. Riegler [\[6\]](#page-31-5) developed an extension to the Shockley-Ramo theorem for detectors with resistive (non-zero conductivity) elements:

$$
I_{\theta,h}^{ind}(t)=-\frac{q_{\theta,h}}{V_0}\int_0^t\vec{W}_V[\vec{x}_{\theta,h}(t'),t-t']\vec{v}_{\theta,h}(t')dt'
$$

The weighting vector \vec{W}_V represents the detector response when applying a voltage Dirac pulse *δ*(*t*)*V*⁰ to the readout electrode of interest.

• Can be calculated analytically for simple 1D-like structures.

Time Domain TCT Signal (Extended Shockley-Ramo Theorem) **Run 2 TCT Signal**

- Fabrication of simple bonded test structures
	- **–** Run 2 with metal contamination at the interface
	- **–** Run 3 without detectable metal contamination *(preliminary)*

- Fabrication of simple bonded test structures
	- **–** Run 2 with metal contamination at the interface
	- **–** Run 3 without detectable metal contamination *(preliminary)*
- The fabricated samples show a one-sided depletion behaviour.
	- **–** This is independent of the presence of metal contamination *(preliminary)*
	- **–** This indicates a N++ behaviour of the bonding interface *(preliminary)*

- Fabrication of simple bonded test structures
	- **–** Run 2 with metal contamination at the interface
	- **–** Run 3 without detectable metal contamination *(preliminary)*
- The fabricated samples show a one-sided depletion behaviour.
	- **–** This is independent of the presence of metal contamination *(preliminary)*
	- **–** This indicates a N++ behaviour of the bonding interface *(preliminary)*
- Time domain signals can accurately be predicted from first principles.
	- **–** This enables the prediction of the behaviour of more complex bonded detectors.
	- **–** Simulation of charge sharing in strip detectors potentially allows to probe the defect density at the interface.

- Fabrication of simple bonded test structures
	- **–** Run 2 with metal contamination at the interface
	- **–** Run 3 without detectable metal contamination *(preliminary)*
- The fabricated samples show a one-sided depletion behaviour.
	- **–** This is independent of the presence of metal contamination *(preliminary)*
	- **–** This indicates a N++ behaviour of the bonding interface *(preliminary)*
- Time domain signals can accurately be predicted from first principles.
	- **–** This enables the prediction of the behaviour of more complex bonded detectors.
	- **–** Simulation of charge sharing in strip detectors potentially allows to probe the defect density at the interface.
- The main influence of the bonding interface seems to be on the depletion behaviour.

Johannes Wüthrich ETHZ - HPK F 27 jwuethri@phys.ethz.ch

Thesis: [Low-temperature wafer-wafer](https://www.research-collection.ethz.ch/handle/20.500.11850/658117) [bonding for particle detection](https://www.research-collection.ethz.ch/handle/20.500.11850/658117)

Thank you very much for your attention.

References I

- 1. Takagi, H., Kikuchi, K., Maeda, R., Chung, T. R. & Suga, T. Surface activated bonding of silicon wafers at room temperature. Applied Physics Letters **68**, 2222. doi:[10.1063/1.115865](https://doi.org/10.1063/1.115865) (1996).
- 2. Wüthrich, J. & Rubbia, A. On the depletion behaviour of low-temperature covalently bonded silicon sensor diodes. Journal of Instrumentation **17**, C10015. doi:[10.1088/1748-0221/17/10/C10015](https://doi.org/10.1088/1748-0221/17/10/C10015) (2022).
- 3. Wüthrich, J., Alt, C. & Rubbia, A. TCT investigation of the one-sided depletion of low-temperature covalently bonded silicon sensor P-N diodes. Journal of Instrumentation **18**, P05004. doi:[10.1088/1748-0221/18/05/P05004](https://doi.org/10.1088/1748-0221/18/05/P05004) (2023).
- 4. Shockley, W. Currents to Conductors Induced by a Moving Point Charge. Journal of Applied Physics **9**, 635. doi:[10.1063/1.1710367](https://doi.org/10.1063/1.1710367) (1938).
- 5. Ramo, S. Currents Induced by Electron Motion. Proceedings of the IRE **27**, 584. doi:[10.1109/JRPROC.1939.228757](https://doi.org/10.1109/JRPROC.1939.228757) (1939).
- 6. Riegler, W. An application of extensions of the Ramo–Shockley theorem to signals in silicon sensors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated **940**, 453. doi:[10.1016/j.nima.2019.06.056](https://doi.org/10.1016/j.nima.2019.06.056) (2019).