

The muEDM experiment at PSI

David Höhl

Supervisors: Klaus Kirch, Philipp Schmidt-Wellenburg SPS, ETH Zürich , 11th September 2024 roject funded by

Witte

ucation and Research EAER ate Secretariat for Education, search and Innovation SERI

Why the muon electric dipole moment?

Puzzles in Particle Physics?

PSI

Sakharov conditions:

- Baryon number violation
- C and CP violation

3

• Departure from thermal equilibrium

CP Violation

B

Ε

- phase of CKM matrix $d_{\mu} \sim O(10^{-42}) \,\mathrm{e} \cdot \mathrm{cm}^{[1]}$
- strong CP angle $\overline{\theta}$ (QCD) $d_{\mu} \stackrel{<}{_{\sim}} 1.8 \times 10^{-35} \,\mathrm{e} \cdot \mathrm{cm}^{[1]}$
- → insufficient to explain excess of matter

 \rightarrow EDMs good probes for new physics

Muon EDM

In effective field theory

 $\begin{aligned} \mathcal{H}_{eff} &= c_R^{\ell_f \ell_i} \overline{\ell}_f \sigma_{\mu\nu} P_R \ell_i F^{\mu\nu} + h.c. \end{aligned}$ Wilson coefficient $c_R^{\ell_f \ell_i}$, $\ell \in \{e, \mu, \tau\}$ $a_{\ell_i} \sim \operatorname{Re} c_R^{\ell_i \ell_i}$ and $d_{\ell_i} \sim \operatorname{Im} c_R^{\ell_i \ell_i}$ ^[2]

muon EDM measurement on bare lepton and constraining $c_R^{\ell_f \ell_i}$

Current best direct limit $d_{\mu} < 1.8 \times 10^{-19} e \cdot cm^{[3]}$

PSI

At PSI measure muEDM in a storage ring using the frozen-spin technique

- $d_{\mu} < 3 \times 10^{-21} \mathrm{e} \cdot \mathrm{cm}$
- $d_{\mu} < 6 \times 10^{-23} \mathrm{e} \cdot \mathrm{cm}$

5

Measuring MDM and EDM in a storage ring

Magnetic Dipole Moment

$$\vec{\mu} = g \frac{q}{2m_{\mu}} \vec{s}$$

Larmor precession with Thomas precession

$$\vec{\omega}_0 = -\frac{q a}{m} \left(\left(1 + \frac{1}{\gamma a} \right) \vec{B} - \frac{\gamma}{\gamma + 1} \left(\vec{B} \cdot \vec{\beta} \right) \vec{\beta} \right)$$

Cyclotron frequency

$$\vec{\omega}_{c} = -\frac{q \, a}{m} \left(\frac{\vec{B}}{\gamma \, a} \right)$$

Spin precession due to anomalous magnetic moment

$$\vec{\omega}_a = \vec{\omega}_0 - \vec{\omega}_c = -\frac{q \, a}{m} \left(\vec{B} - \frac{\gamma}{\gamma+1} \left(\vec{B} \cdot \vec{\beta} \right) \vec{\beta} \right)$$

PSI

Electric Dipole Moment

$$\vec{d} = \eta \, \frac{q}{2m_{\mu}c} \vec{s}$$

Additional precession

$$\vec{\omega} = \vec{\omega_a} + \vec{\omega_e} = \frac{q \ a}{m} \left(\vec{B} - \frac{\gamma}{\gamma + 1} (\vec{B} \cdot \vec{\beta}) \vec{\beta} - \left(1 + \frac{1}{a(1 - \gamma^2)} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right)$$

$$+ \frac{q \ \eta}{2m} \left(\frac{\vec{E}}{c} - \frac{\gamma c}{\gamma + 1} (\vec{E} \cdot \vec{\beta}) \vec{\beta} + \vec{\beta} \times \vec{B} \right)$$

$$\vec{B} \perp \vec{\beta} \perp \vec{E}$$

$$\vec{B} = \vec{\omega_a} \quad \vec{\zeta} \quad \vec{\omega_a^2 + \vec{\omega_e^2}}$$

$$\vec{\zeta} = \operatorname{atan} \left(\frac{2d_{\mu}\beta cm}{a} \right) \quad \vec{S} = \vec{S} \quad \vec{\omega}_e$$

PSI

Frozen-Spin Technique

Tuning the electric field

→ Spin precession only due to EDM

Measuring the muEDM

- asymmetry precession too slow
- change of asymmetry with respect to time
- optimize sensitivity by maximizing $\alpha \sqrt{N}$

The muEDM experiment

muEDM setup in Geant4^[4-6]

PSI

13

Background Signals

Outlook

Outlook

- Preliminary Results for the Injection Studies at Low Magnetic Fields for the muEDM Experiment by Diego Alejandro Sanz Becerra
- future measurement campaigns
 - study possible effects on detector signals due to kicker pulse
 - characterize muons trajectory
 - injection through superconducting channels
 - store muons on stable orbit
- first muEDM measurement in 2026
- Posters
 - Detector system to study early-to-late stability of the muEDM experiment by Chavdar Dutsov
 - Electric and magnetic field studies towards muon storage in the search for a muon electric dipole moment by Timothy Hume

Thank you!

References

[1] Diptimoy Ghosh and Ryosuke Sato. Lepton electric dipole moment and strong CP violation. In: Physics Letters B 777 (Feb. 2018), 335–339. doi: 10.1016/j.physletb.2017.12.052

[2] Andreas Crivellin, Martin Hoferichter, and Philipp Schmidt-Wellenburg. Combined explanations of $(g - 2)_{\mu,e}$ and implications for a large muon EDM. In: Physical Review D 98.11 (Dec. 2018), p. 113002.

[3] G. W. Bennett et al. Improved limit on the muon electric dipole moment. In: Phys. Rev. D 80 (5 2009), p. 052008. url: https://link.aps.org/doi/10.1103/PhysRevD.80.052008.

[4] S. Agostinelli et al. Geant4—a simulation toolkit. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506.3 (July 2003), pp. 250–303. doi: 10.1016/s0168-9002(03)01368-8.

[5] J. Allison et al. Geant4 developments and applications. In: IEEE Transactions on Nuclear Science 53.1 (Feb. 2006), pp. 270–278. doi: 10.1109/tns.2006.869826.

[6] J. Allison et al. Recent developments in Geant4. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 835 (Nov. 2016), pp. 186–225. doi: 10.1016/j.nima.2016.06.125.

Backup

CP Violation

$$\mathcal{H} = -\vec{\mu}\cdot\vec{B} - \vec{d}\cdot\vec{E}$$

→ electric dipole moments (EDM) of fundamental particles are CP violating

Standard Model contributions:

- phase of CKM matrix ٠
- strong CP angle $\overline{\theta}$ (QCD) $d_e \stackrel{<}{_\sim} 8.6 \times 10^{-38} \text{ e} \cdot \text{cm}$ •

 $d_e \sim O(10^{-44}) \,\mathrm{e\cdot cm}$

 \rightarrow insufficient to explain excess of matter

 \rightarrow EDMs good probes for new physics

θ -term in QCD

possible term due to QCD topological structure

- $\bar{\theta} = \theta + \operatorname{Arg} \operatorname{Det} M_q$ (chiral transformation $\psi' = e^{i\alpha\gamma_5/2}\psi$)
- Induces a neutron electric dipole moment

 $d_n \sim (2.50 \pm 1.25) \times 10^{-16} \,\bar{\theta} \,\mathrm{e\cdot cm}$

- With experimental limit on d_n giving $\bar{\theta}_{\sim}^{<} 10^{-1}$
- Hadronic light-by-light diagrams give dominant contribution to lepton EDMs^[1]

^{*}Tanmoy Bhattacharya, Vincenzo Cirigliano, Rajan Gupta, Emanuele Mereghetti, and Boram Yoon.Contribution of the QCD θ -term to the nucleon electric dipole moment. In: Physical Review D 103.11 (June 2021)

Magnetic Dipole Moment

Larmor precession Thomas prec relativistic

$$\vec{\omega_0} = -\frac{q}{m} \left(\left(1 + \frac{1}{\gamma a} \right) \vec{B} - \frac{\gamma}{\gamma + 1} \left(\vec{B} \cdot \vec{\beta} \right) \vec{\beta} - \left(1 + \frac{1}{a(1 + \gamma)} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right)$$

 $\vec{\mu} = g \frac{q}{2m_{\mu}} \vec{s}$

Cyclotron frequency

$$\vec{\omega}_{c} = -\frac{q}{m} \left(\frac{\vec{B}}{\gamma a} - \frac{\gamma}{a (\gamma^{2} - 1)} \frac{\vec{\beta} \times \vec{E}}{c} \right)$$

Spin precession due to anomalous magnetic moment

$$\vec{\omega}_{a} = \vec{\omega}_{0} - \vec{\omega}_{c} = \frac{q a}{m} \left(\vec{B} - \frac{\gamma}{\gamma+1} \left(\vec{B} \cdot \vec{\beta} \right) \vec{\beta} - \left(1 + \frac{1}{a (1-\gamma^{2})} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right)$$

Angle due to EDM precesseion

Muon Beamlines

G4beamline Optimization

- simulation runs for different sets in the parameter space
- surrogate model to optimize for storage efficiency and heat output
- for optimized parameters achieved 0.4% storage efficiency

Talks and Posters

Talks

• Preliminary Results for the Injection Studies at Low Magnetic Fields for the muEDM Experiment by Diego Alejandro Sanz Becerra

Posters

- Detector system to study early-to-late stability of the muEDM experiment by Chavdar Dustsov
- Electric and magnetic field studies towards muon storage in the search for a muon electric dipole moment by Timothy Hume