

Simulation and Optimization of the Active Magnetic Shield for n2EDM

Sergey Konstantin Ermakov On behalf of the n2edm collaboration at PSI ETH Zürich 11th September 2024, Zürich

1 [n2EDM

D PHYS

1004 J

70047

PSI

Magnetic Shielding

Magnetic Shielding

n2EDM

- Based on sensors around the experiment
- Coils generate a magnetic field
- To dynamically compensate for external disturbances

Intricate Coil System

Intricate Coil System

Active Magnetic Shielding

- 8 coils:
 - \rightarrow 3 homogeneous \rightarrow 5 higher order
- ±50µT
- <u>1µT compensation</u>
- 3-axis
 Fluxgates

Compensation Algorithm

$$B = B_0 + MI$$

Compensation Algorithm

Background Magnetic Field

Compensation Example

External Disturbance

External Disturbance

Compensation Example

COMSOL Implementation

COMSOL Implementation

 Target:

 Condition Number
 Average Distance to MSR corners

• Target: 1) Condition Number 2) Average Distance to MSR corners

 Target:

 Condition Number
 Average Distance to MSR corners

- Target:

 Condition Number
 Average Distance to MSR corners
- Vary:1) # Fluxgates

- Target:

 Condition Number
 Average Distance to MSR corners
- Vary:1) # Fluxgates

12

- Target:

 Condition Number
 Average Distance to MSR corners
- Vary:1) # Fluxgates

- Target:

 Condition Number
 Average Distance to MSR corners
- Vary:
 - 1) # Fluxgates
 - 2) Positions

- Target:

 Condition Number
 Average Distance to MSR corners
- Vary:
 - 1) # Fluxgates
 - 2) Positions

- Target:

 Condition Number
 Average Distance to MSR corners
- Vary:
 - 1) # Fluxgates
 - 2) Positions

🌔 PSI

- Target:

 Condition Number
 Average Distance to MSR corners
- Vary:
 - 1) # Fluxgates
 - 2) Positions
 - 3) Orientations

- Target:

 Condition Number
 Average Distance to MSR corners
- Vary:
 - 1) # Fluxgates
 - 2) Positions
 - 3) Orientations

🌔 PSI

- Target:

 Condition Number
 Average Distance to MSR corners
- Vary:
 - 1) # Fluxgates
 - 2) Positions
 - 3) Orientations

Implementation in System

Implementation in System

ETHzürich

Performance Test

External Disturbance

ETH zürich Vinzed SPSI

Simulated Residual Field

Conclusion and Outlook

- Successful Optimization for Condition Number
- Spread unchanged → Why?
- Applicable to many more systems!
- C. Abel et. al., arXiv:2307.07588v1 (2023)

EHzürich

Questions?

