Annual Meeting of the Swiss Physical Society 9-13 September 2024, ETH Zürich

Search for Dark Sector particles at LHCb

Pasquale Andreola¹, on behalf of the LHCb collaboration

¹University of Zurich

September 7, 2023

SNF

Search for Dark Sector particles at LHCb

Overview

- 2 Dark Sector at LHCb
- Oark Sector particles searches
 - 4 Conclusions

Pasquale Andreola

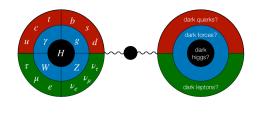
The Dark Sector

The Dark Sector is a collection of hypothetical particles that feebly interact with Standard Model (SM) particles through new forces

What is the purpose of looking for the Dark Sector?

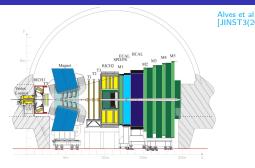
- The Dark Sector may include the cosmological Dark Matter
- The Dark Sector particles can address some problems of the Standard Model, such as the baryogenesis and the strong CP problem
- The Dark Sector can explain some experimental anomalies as $(g-2)_{\mu}$

Image adapted from Symmetry


Search for Dark Sector particles at LHCb

Minimal Dark Sector Portals

Minimal Dark Sector Portals are minimal extensions of the SM, featuring a single new mediator that feebly interacts with SM particles.


Due to the characteristics of the SM, four minimal portals are possible:

- Vector Portal Dark Photon
- Higgs Portal Dark Scalar
- Neutrino Portal Heavy Neutral Lepton
- Axion-like Portal Axion-like particles coupling to SM

The LHCb detector

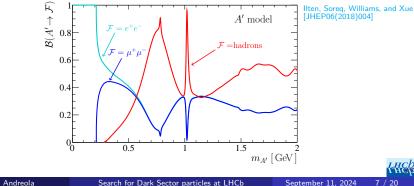
LHCb is a single-arm forward spectrometer suited for Dark Sector searches

- Excellent vertex resolution $((15+29/p_T[GeV])\mu m)$
- Very flexible trigger (fully software trigger after the upgrade)
- Good momentum resolution ($\Delta p/p$ from 0.5% to 1.0%)

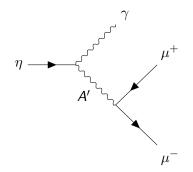
Dark Sector particles at LHCb

LHCb can detect Dark Sector particles originating from different sources:

- In *pp* collisions, Dark Sector particles are produced via:
 - \rightarrow Dark matter mix with mesons


 $\rightarrow \text{ Drell-Yan } (q\bar{q} \text{ annihilation}) \\ \rightarrow \text{ Meson Decays } \longrightarrow \{ \begin{array}{c} \text{DM prompt decays} \\ \text{DM displaced decays} \end{array} \}$

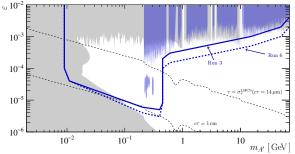
Introduction to the Dark Photon


- The dark sector could contain a dark U(1) symmetry
- The dark U(1) gauge boson A' is called Dark Photon (DP)
- The coupling between γ and ${\it A'}$ is governed by the kinetic mixing ϵ

$$\mathcal{L}_{\gamma \mathcal{A}'} \supset -rac{1}{4} F'_{\mu
u} F'^{\mu
u} + rac{1}{2} m^2_{\mathcal{A}'} \mathcal{A}'^{\mu} \mathcal{A}'_{\mu} + \epsilon e \mathcal{A}'_{\mu} J^{\mu}_{EM}$$

Jniversität ′ürich^{∞™}

Hypothetical decay chain of the Dark Photon



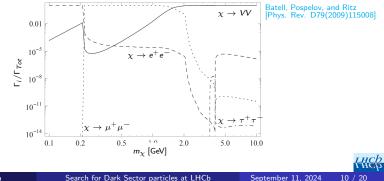
Hypothetical decay chain involving a dark photon A': $\eta \to \gamma {\rm A}' \, (\to \mu^+ \mu^-)$

Present and future of the Search for the Dark Photon

• Searches for A' set constraints on $\epsilon - m_{A'}$ region $\left(\tau_{A'} \propto rac{1}{\epsilon^2 m_{A'}} \right)$

Craik, Ilten, Johnson, and Williams [arXiv:2203.07048 (2022)]

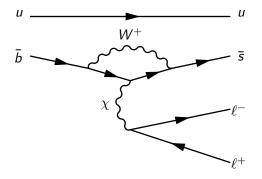
- LHCb has excellent sensitivity to dark photons
- Searches for long-lived and prompt ${\cal A}' o \mu^+ \mu^-$ have been performed
 - $\rightarrow~$ Competitive constraints on prompt-like dark photons
 - ightarrow World-leading constraints on low-mass dark photons with $au_{{
 m A}'} \sim 1\,{
 m ps}$


• Inclusive searches for $A'
ightarrow e^+e^-$ allowed in Run3 $\frac{V_{\rm Universitat}}{V_{\rm Zirich}}$

Introduction to the Dark Scalar

- The Higgs portal couples the SM Higgs to a gauge singlet scalar χ
- The dark scalar χ can mix with the SM Higgs boson with a mixing angle θ_{χ}

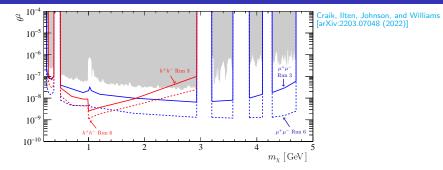
$$\mathcal{L}_{\chi} \supset \left(\mu \chi + \lambda \chi^2
ight) H^{\dagger} H$$


• χ may be produced through flavour-changing meson decays $(B \to K\chi)$ \rightarrow LHCb can search for $\chi \rightarrow \mu^+ \mu^-$

Iniversität "iirich"

Dark Sector particles searches Dark Scalar

Hypothetical decay chain of the Dark Scalar

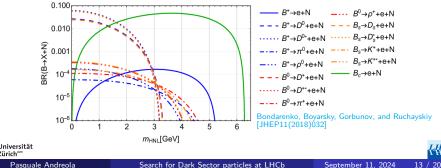


Hypothetical B^+ meson decay chain: $B^+ \to K^+ \chi (\to \ell^+ \ell^-)$

Present and future of the Search for the Dark Scalar

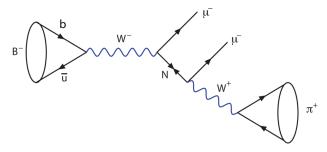
- Search for long-lived scalar particle in $B^+ \to K^+ \chi (\mu^+ \mu^-)$
 - \rightarrow World-leading constraints on Higgs-portal scalar for $m_{\rm S} < 2m_{\tau}$
- Huge improvements expected for Run 3:
 - \rightarrow searching for long-lived χ and explore new parameter space $(\tau_S \propto \theta_S^2)$
 - \rightarrow including $B^+ \rightarrow K^+ \chi (\pi^+ \pi^-)$ and $B^+ \rightarrow K^+ \chi (K^+ K^-)$

"iirich"


Introduction to the Heavy Neutral Lepton

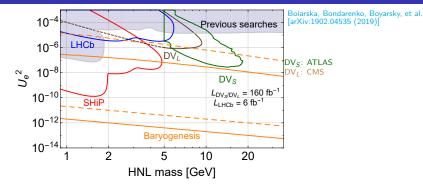
- The neutrino portal refers to the coupling of the gauge singlet N to the SM
- The N couples with LH operator formed of the lepton and the Higgs

$$\mathcal{L}_N \supset -y^{\alpha}L_{\alpha}HN + h.c.$$


• The phenomenology of N is related to m_N and the mixing angles $|U_{\ell}|^2$

- \rightarrow HNL can be produced in beauty mesons weak decays
- \rightarrow HNL can be detected through its semi-leptonic weak decays

'ürich"


Hypothetical decay chain of the Heavy Neutral Lepton

 B^- decay chain including a hypothetical heavy neutral lepton N

Present and future of the Search for the HNL

• LHCb searched for HNL in $B^-
ightarrow N(\pi^+\mu^-)\,\mu^-$

ightarrow New results using 2016-2018 data are coming out soon!

- Plan to search for HNL in inclusive B and B_c decays
 - $\rightarrow~$ Improve the detection efficiency of particles down to $p_{T}\sim0.5\,\text{GeV}$
 - ightarrow Exploit the removal of the hardware trigger

Jniversität ′ürich^{∞™}

Introduction to the axion-like particles

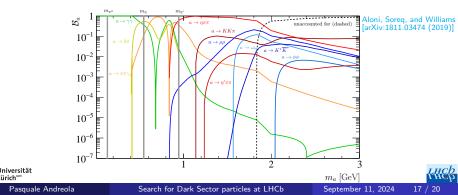
- Axions are pseudoscalar particles postulated by the Peccei-Quinn mechanism to solve the *strong CP problem*
- Axion-like particles (ALPs) are hypothetical particles, similar to axions, arising from spontaneously broken global symmetries
- ALPs are pseudo-Nambu-Goldstone bosons whose couplings to the Standard Model gauge bosons are highly suppressed
- ALPs can couple (not exclusively) to photons and gluons:

$$\mathcal{L} \supset c_{\gamma\gamma} \frac{\alpha}{4\pi} \frac{a}{f} F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{c_{GG}}{4\pi} \frac{\alpha_S}{f} \frac{a}{G}_{\mu\nu} \tilde{G}^{\mu\nu}$$

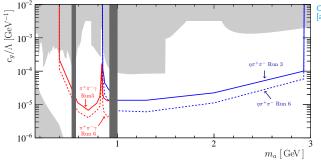
- ALPs interactions are strongly model-dependent
 - $\rightarrow\,$ LHCb can look for both gluon-coupled and photon-coupled ALPs

Pasquale Andreola

Iniversität ürich[∞]


The ALPs coupling to gluons

Consider a scenario where the ALP-gluon coupling is dominant ($c_{GG} >> c_{\gamma\gamma}$)


- $a \rightarrow 3\pi$ and $a \rightarrow \pi\pi\gamma$ are dominant in the 0.55 $\lesssim m_a \lesssim$ 0.95GeV region \rightarrow Search for $B^0 \rightarrow a (\rightarrow 3\pi) K\pi$ and $B^0 \rightarrow a (\rightarrow \pi\pi\gamma) K\pi$
- $a \rightarrow \eta \pi \pi$ is dominant in the 0.95 $\leq m_a \leq 1.85$ GeV region

 \rightarrow Search for $B^0 \rightarrow a (\rightarrow \eta \pi \pi) K \pi$

"iirich"

Present and future of the Search for the ALPs-gluon

Craik, Ilten, Johnson, and Williams [arXiv:2203.07048 (2022)]

- Searches ongoing for ALPs coupling to gluons using Run2 data
- Expected improvements for Run3:
 - \rightarrow Exploit the removal of the hardware trigger
 - \rightarrow Explore long-lived ALPs below 1 GeV

Conclusions

- The LHCb experiment can leverage the advantages of both the energy and intensity frontiers to look for Dark Sector particles
- A broad program of searches is planned for the future:
 - $\rightarrow~$ Dark photon to dielectron
 - $\rightarrow\,$ Long-lived dark scalar to pions and kaons
 - ightarrow Massive neutrinos in beauty meson decays
 - ightarrow ALPs coupling to the gluons
- For Run3, the LHCb detectors have been upgraded, and with the new software trigger, exciting results are expected in the coming years!

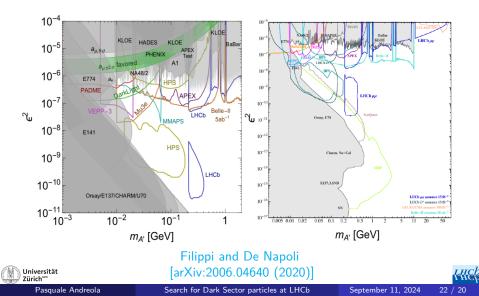
Acknowledgements

Thanks for your attention!

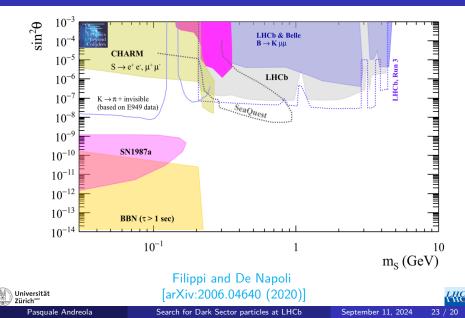
Pasquale Andreola

Search for Dark Sector particles at LHCb

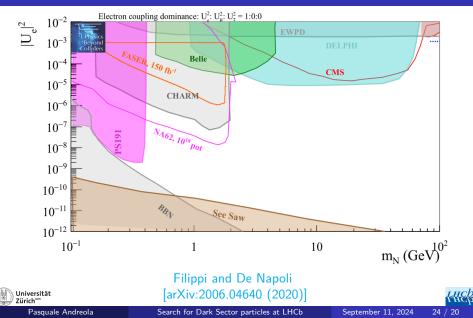
Backup Slides

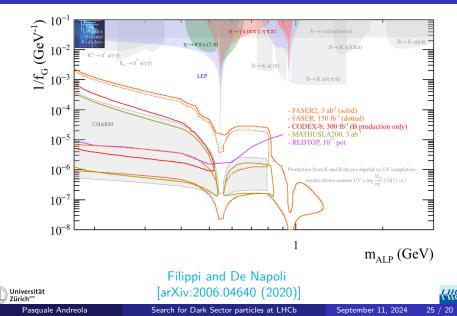

Pasquale Andreola

Search for Dark Sector particles at LHCb


September 11, 2024

1104


Current status of the search for the dark photon


Current status of the search for the dark scalar

Current status of the search for the HNL

Current status of the search for ALPs

References

References I

Aloni, Daniel, Yotam Soreq, and Mike Williams (2019). "Coupling QCD-Scale Axionlike Particles to Gluons". In: Phys. Rev. Lett. 123.3, p. 031803. DOI: 10.1103/PhysRevLett.123.031803. arXiv: 1811.03474 [hep-ph]. Alves Jr., A. Augusto et al. (2008). "The LHCb Detector at the LHC". In: JINST 3, S08005. DOI: 10.1088/1748-0221/3/08/S08005. Batell, Brian, Maxim Pospelov, and Adam Ritz (2009). "Probing a Secluded U(1) at B-factories". In: Phys. Rev. D 79, p. 115008. DOI: 10.1103/PhysRevD.79.115008. arXiv: 0903.0363 [hep-ph]. Boiarska, Iryna et al. (Feb. 2019). "Probing baryon asymmetry of the Universe at LHC and SHiP". In: arXiv: 1902.04535 [hep-ph]. Bondarenko, Kyrylo et al. (2018). "Phenomenology of GeV-scale Heavy Neutral Leptons". In: JHEP 11, p. 032. DOI: 10.1007/JHEP11(2018)032. arXiv: 1805.08567 [hep-ph].

References II

- Craik, Daniel et al. (Mar. 2022). "LHCb future dark-sector sensitivity projections for Snowmass 2021". In: Snowmass 2021. arXiv: 2203.07048 [hep-ph].
- Filippi, Alessandra and Marzio De Napoli (2020). "Searching in the dark: the hunt for the dark photon". In: *Rev. Phys.* 5, p. 100042. DOI:
- 10.1016/j.revip.2020.100042. arXiv: 2006.04640 [hep-ph].
 Ilten, Philip et al. (2018). "Serendipity in dark photon searches". In:
 - *JHEP* 06, p. 004. DOI: 10.1007/JHEP06(2018)004. arXiv: 1801.04847 [hep-ph].

