

TEPX Detector for the CMS Inner Tracker Upgrade: Module Production Status and Plans

Dr. Amrutha Samalan on behalf of CMS Collaboration, Paul Scherrer Institute, Switzerland

- CMS Inner Tracker Upgrade for HL-LHC
- CMS Inner Tracker Layout
- TEPX Detector Layout
- TEPX Hybrid Pixel Modules
- TEPX Module Production
- Recent updates of TEPX module testing and qualification

Amrutha Samalan

SPS Annual Meeting 2024

CMS Inner Tracker Upgrade for HL-LHC

Increase in the average pileup (50 \rightarrow 200 pp collisions per bunch crossing) results in:

- Higher hit rate: up to 3.2 GHz/cm²
- Longer latency: $3.2 \rightarrow 12.8 \ \mu s$
- Higher trigger rate: 100 → 750 kHz
- Increased radiation: up to ~1 Grad

(Fluence of 2.3 x10¹⁶ neq/cm²)

To cope with these challenges CMS is implementing different upgrades of the present systems, including the replacement of the current Inner Tracker (IT) system with an improved one

Amrutha Samalan

CMS Inner Tracker Upgrade for HL-LHC

- Increased granularity
- Lower detection threshold (new readout chip)
- Reduced material budget (light mechanics, services)

Amrutha Samalan

TEPX Hybrid Pixel Modules

• CMS Readout Chip (CROC)

CROC 65 nm CMOS ASIC developed by joint ATLAS-CMS
RD53 Collaboration (pixels: 432 x 336; size 21.6 x 18.6 mm²)

decoupling capacitors and connectors

- 50 x 50 µm² cell size
- 3.2 GHz/cm² hit rate
- Radiation tolerance up to 1 Grad

TEPX: one module type with 4 CROCs

- CROCs on a module are powered in parallel
- Detector modules are powered in series with a current generator

Module Production

- A total of 2000 TEPX modules are planned to be produced
- Kick-off for module production is currently in progress at multiple assembly sites
- PSI is the designated production center for TEPX modules in Switzerland
- Parallel module testing and system validation are actively being conducted at both PSI and UZH (University of Zurich).

Module assembly using robotic arm at PSI

SPS Annual Meeting 2024

Module Testing and Qualification

- Quick module functionality test after assembly, including optical inspection
- Qualification tests
 - IV curves
 - CROC and pixel functionality
 - Bump-bonding
 - Thermal cycling
 - High-rate x-ray tests and x-ray calibration for subset of modules

- Several coldboxes operational at PSI and UZH for parallel module testing (8 modules per box)
- Different temperature levels for module testing can be achieved using the coldbox (-4°C to 20°C)

Amrutha Samalan

SPS Annual Meeting 2024

CROC Configuration Tests

Active pixel scan to identify dead/inactive pixels across the sensor array

Irradiation Tests

Module functionality tests using two irradiation sources (Sr-90)

Two Sr-90 sources placed on top of the TEPX kick-off module mounted inside the coldbox

Pulse height (ToT) distribution / across the module

X-ray high rate tests

Occupancy distribution across the module

test setup at PSI

10 September 2024

HDI High Current Test

To check the current and thermal tolerance of HDI components and wire-bonds At current = 8 A -> Temp= 28.3°C At current = 10 A -> Temp= 32.6°C *Temperature at other areas= 22°C 8 A for 5 hrs -> No hot points observed

32,6 ℃

Amrutha Samalan

SPS Annual Meeting 2024

Conclusions

- To meet the challenging conditions of the HL-LHC, the current Phase-1 CMS Inner tracker detector will be replaced by the **upgraded and more advanced Phase-2 inner tracker system**
- Increased granularity and extended forward region acceptance from |η| < 3 to |η| < 4 in the Phase-2 Inner Tracker design

- Currently, pre-production of all the Inner Tracker modules including the TEPX modules is ongoing
- In Switzerland, PSI and UZH are the main assembly/testing centres for TEPX modules
- Recent test results of TEPX kick-off modules are discussed

Amrutha Samalan

SPS Annual Meeting 2024

Thank You

IT Upgrades

	Phase 0	Phase 1	Phase 2
Mechanics	3 layers+ 4 disks	4 layers + 6 disks	4 layers + 24 disks
Inner radius	4 cm	3 cm	3 cm
Active Si area	1 m ²	1 m ²	5m ²
Channels	66M	124M	2000M
Pixel size	100x150 µm ²	100x150 µm²	$25x100/50x50 \ \mu m^2$
Radiation tolerance	100 Mrad	300 Mrad	1000 Mrad

IT Mechanics

HDI Layers

Coldbox Layout

TEPX Sensor

- 150 μm bulk thickness, 25x100 μm² pixels cells everywhere
- Planar n-in-p sensors:
- Bias up to 600V and spark protection between ROC and sensors
- Three vendors qualified in the Market Survey, Tender being closed in these days
- Bump bonding pattern is 50x50 μm²
 - Cross-talk issues studied and minimized (i.e. bitten implant on planar)
- 3D sensors for barrel L1
- Short drift distance ~50 μm (3D) vs 150 μm (Planar)
- Slim edges (150 μm) vs planar (~450 μm) \rightarrow smaller dead zone
- Sensors produced at FBK on 6" wafers and CNM on 4" wafers

No n⁺ implant under metal to reduce x-talk

CMS CROC

Designed by the RD53 collaboration

- 65 nm CMOS technology (current detector 250 nm)
- Radiation hard at least up to 0.5 Grad
- 50 x 50 μm² pixel size
- 4 data links per chip at 1.28 Gb/s using Aurora encoding
- "Linear" analog input
 - Krummenacher feedback for return to baseline and leakage current compensation
- Digital readout with Time over Threshold
- Column readout, data encoding
- Data merging: read-out of up to three secondary chips through a primary one in the same module
 - ightarrow reduction of data line in low-occupancy layers

Serial power scheme of the Inner Tracker is based on a ShuntLDO regulator on chip

Serial Powering

- Serial power not sensitive to voltage drops → does not pose stringent requirements on R → low mass cables
- Current is shared in parallel between two (double) or four chips (quad) inside the same module
- All chain elements see the same current if they represent the very same and constant load → Shunt LDO
- The most demanding chip in the chain determines the power to be delivered

