### Performance tests of the ATLAS Inner Tracker Pixel detector opto-electrical conversion system

Marianna Glazewska

SPS Annual Meeting 2024

Zürich, 10.09.2024



### Following on from Lucas' talk...

- Crucial period for verification of data transmission and mechanical performance of Optosystem
- Mechanic:
  - Optopanel fibre bundle fitting, mounting
- Data transmission:
  - Optoboard performance under intense radiation
  - Optoboard testing for Optosystem construction ("production")



### Mechanics of the Optosystem



# Twinax fitting

- What was done?
  - 1. Electrical signal cables (twinax) attached to 3D printed "termination boards" that fit onto Optoboxes
  - 2. Each Optobox with twinax placed into Optopanel, half chosen is one of the most populated (~1700 twinax)





# Twinax fitting

- What was done?
  - 1. Electrical signal cables (twinax) attached to 3D printed "termination boards" that fit onto Optoboxes
  - 2. Each Optobox with twinax placed into Optopanel, half chosen is one of the most populated (~1700 twinax)
- What was noticed?
  - "Termination boards" curling upwards (A) once twinax attached
  - 2. Corner of box closest to entry (B) very crowded, twinax laying on top of each other
  - 3. Small R corner of panel (C) has wasted empty space





# Twinax fitting

- What was done?
  - 1. Electrical signal cables (twinax) attached to 3D printed "termination boards" that fit onto Optoboxes
  - 2. Each Optobox with twinax placed into Optopanel, half chosen is one of the most populated (~1700 twinax)
- What was noticed?
  - "Termination boards" curling upwards (A) once twinax attached
  - 2. Corner of box closest to entry (B) very crowded, twinax laying on top of each other
  - 3. Small R corner of panel (C) has wasted empty space
- Solutions:
  - 1. Small R side of panel redesigned to make entry wider
  - Real termination boards are stiffer (D) but curling should still be something to keep in mind when filling panel





### Mounting at CERN

• Aim: start to devise a plan of how to install the Optosystem in the ATLAS cavern



#### Inner services mock-up, B180@CERN

#### Proposal:

- 1. Attach adapter plate to endplate and cover screws with kapton tape
- Mount Optopanel onto adapter plate without Optoboxes (manouvre ~30 kg instead of 60 kg)
- 3. Fill Optopanel with Optoboxes from small-R to large-R

Mounted Optopanel



Mounted adapter plate





Optopanel with Optoboxes removed









### The Optoboard





• Around 1600 of these boards will read out the full ITk pixel detector

#### • GBCR

GigaBit Cable Receiver used for signal recovery and equalisation

### • IpGBT

Low Power GigaBit Transceiver used for serialisation

### • VTRx+

Versatile Link Plus Transceiver used for opto-electrical conversion







### Data transmission chain





### **Optoboard irradiation**

- At Inselspital Bern cyclotron
  - Irradiations by day, radiopharmaceutical production by night
- Expected dose (10 years): 50 kGy (see plot), we irradiate to: 150 kGy\* (40 mins, safety factor=3)
- Optoboard connected with an ITk Pixel module via adapter boards





Irradiated components

| lpGBT                                         | GBCR                                          | VTRx+                                   |
|-----------------------------------------------|-----------------------------------------------|-----------------------------------------|
| <ul> <li>Bit Error Ratio Test</li></ul>       | <ul> <li>Bit Error Ratio Test</li></ul>       | <ul> <li>Bit Error Ratio Test</li></ul> |
| (BERT) with PRBS7 <li>Single Event Upset</li> | (BERT) with PRBS7 <li>Single Event Upset</li> | (BERT) with Aurora                      |
| (SEU) counter                                 | (SEU) counter                                 | 64/66b                                  |



#### **IpGBT/GBCR**: BERT with PRBS7 **VTRx+**: Soft Error (BERT) with Aurora

### Bit Error Ratio

- Tests data transmission quality
- BER limit = 95% confidence interval
  - Industry standard is limit of O(10<sup>-12</sup>)



- $\lim_{\substack{\text{BER} \\ 95\%(x) = \\ 1.28 \cdot 10^9 \cdot \text{efficiency} \cdot t}} P^+(x) & \text{where:} \\ P_+ Poisson upper limit for x errors} \\ P_+ Poisson upper limit for x errors \\ T_- measurement time \\ P_+ Poisson upper limit for x errors \\ P_+ Poisson$
- Two protocols used:
  - PRBS7: known pattern, 100% efficiency, tests quality between front-end and lpGBT
  - Aurora 64/66b: emulates real datastream, 62% efficiency, tests quality between front-end and FELIX



R. Müller CERN-THESIS-2023-214

# Single Event Upsets (SEUs)

- Does not cause permanent damage
- Caused by radiation: ionising particle causes bit flip in datastream
- Monitored by IpGBT
- How are SEUs recorded in our case?
  - IpGBT registers are triplicated and compared





R. Müller CERN-THESIS-2023-214

# Single Event Upsets (SEUs)

- Does not cause permanent damage
- Caused by radiation: ionising particle causes bit flip in datastream
- Monitored by IpGBT
- How are SEUs recorded in our case?
  - IpGBT registers are triplicated and compared
  - Any mismatch results in the recording of an SEU





# Single Event Upsets (SEUs)

- Does not cause permanent damage
- Caused by radiation: ionising particle causes
   bit flip in datastream
   Not done for N
- Monitored by IpGBT
- How are SEUs recorded in our case?
  - IpGBT registers are triplicated and compared
  - Any mismatch results in the recording of an SEU
  - The incorrect register copy is corrected



ITk Pixe 0 0 1 0 0 +1 SEU 13

Not done for VTRx+: Optoboard too thick to let particles from beam through to lpGBT!

UNIVERSITĂT BERN

AEC ALBERT EINSTEIN CENTER FXPFRIMENT

- Measurement time = 54 s
- $\lim(BER)_{95\%}(0) = 4.34 \cdot 10^{-11}$

### **IpGBT 1** irradiation

Fluctuations in BER limit:

 Instantaneous flux is many times higher than what is expected – probability of bit error occuring is significantly higher

#### Drops in dose:

- Feature of cyclotron source
- Does not affect results in any way



-- BERT 95% CL upper limit for 0 errors



### **GBCR 1** irradiation



Measurement time = 54 s

 $\lim(BER)_{95\%}(0) = 4.34 \cdot 10^{-11}$ 

 $\bullet$ 

•

### VTRx+ irradiation

٠



**Note:** Pre-irradiation plot is not for the irradiated board, but still v4

### Soft error scan pre- and post-irradiation

- Signs of damage: •
  - Compromised data transmission where not expected (black) ٠
  - Region of zero errors slightly 'shrinks' after irradiation (green) •



### Test for Optoboard production

• Aim: design a quick and efficient way of testing Optoboards

#### **6DP to ERF board**

PCB designed specifically for Optoboard testing, and can access all uplinks and 6/8 downlinks





Optoboard test setup (prototype)

#### LUB BINNERSITAT BERN ABERT EINSTEIN CENTER ABERT EINSTEIN CENTER





#### Small ITk Pixel module

Final version sensor chip on a PCB with dedicated ports for data transmission (DP) and powering (LV and HV)





# Upcoming improvements

- Current setup does not allow for all downlinks and uplinks to be tested simultaneously (2 downlinks not tested)
  - Proposed solution: reorganise 6DP board into 8DP board with 3 uplinks per port



 Difficulty connecting optical fibre ferrules without risk of damaging VTRx+ fibre





Optoboard test setup (prototype)

### Summary

### The time has come to build the Optosystem!

- Established initial Optopanel filling (Optoboxes and twinax) and mounting procedures
  - Next steps: Finish mechanical tests of Optopanel, including optical fibre fitting
- Optoboard v4 (final) passed irradiation test even with a safety factor of 3!
  - Next steps: None
- Preparation of Optosystem component test setups including Optoboard test (others not mentioned: cables (CAN, power,...), fibres, Powerboard, Connectorboard, ...)
  - Next steps: Finalise all tests before we start to receive components, then TEST THEM ALL!



Thank you! marianna.glazewska@unibe.ch

#### **Bern Optosystem presentations**

**Previous talk:** Tests and results of the power components of the ATLAS Inner Tracker detector readout system (L. Mollier)

**Next talk:** Time-domain Reflectometer Measurements of the Optosystem Data Transmission Chain (U. Alberti)



### Optoboard data transmission

FOR FUNDAMENTAL PHYSIC



R. Müller CERN-THESIS-2023-214

### How to calculate P<sup>+</sup>

- Bit errors are all independent  $\rightarrow$  Binomial distribution is suitable!
- HOWEVER: p << n → Poisson approximation!</li>

Number of bits checked

Probability that bit is wrong

$$\sum_{r=0}^{N_{\text{err}}} P(r, N_{+}) = 1 - 0.95, \qquad P(r, N_{+}) = \frac{e^{-N_{+}} \cdot (N_{+})^{r}}{r!} \qquad BER_{95\%} = \frac{N_{+}}{N_{bits}}.$$

• Above 10 bit errors, BER limit calculated using:

$$BER_{95\%} \approx \frac{N_{err} + 1.96\sqrt{N_{err}}}{N_{bits}}$$

$$\frac{u^{b}}{\sum_{v \in V} \sum_{v \in V} \sum_{$$

R. Müller CERN-THESIS-2023-214

# Soft Errors (BERT)

- Tests data transmission between front-end and FELIX
- Also BERT, but following 64/66b Aurora protocol
  - 64 bits of datastream scrambled into 66 bits (64 + 2 bit header)



- Scrambling/unscrambling depends on three bits (i<sup>th</sup>,(i-38)<sup>th</sup>,(i-57)<sup>th</sup>)
  - After taking into account double counting, 62% of datastream covered



### Inselspital cylotron

- Cyclotron facility split into two bunkers: cyclotron and irradiation
- Bunkers separated by thick wall, and beam transer line passes through this wall
  - Safe to be inside irradiation bunker when cyclotron running and beam shutter is closed

 $u^{\scriptscriptstyle b}$ 



### Inselspital cyclotron irradiation bunker

End of beam transfer line Comes from cyclotron bunker –



2D stage At this point protons have 16.7 MeV energy

Quadrupole doublet Used for beam focusing

Beam viewer

For beam current measurements, which are used







Collimator Used 1x1 cm<sup>2</sup> as largest ASIC is 0.9x0.9 cm<sup>2</sup>

### Cyclotron proton beam energy



### Calculating dose



- Current (I) is known (files provided by Isidre Mateu)
- Stopping power (dE/dx) calculated using electron charge (e) and energy of 16.7 MeV
- Beam area (A<sub>beam</sub>) calculated assuming beam is circular with 1.5 cm radius, and removing collimator area (1 cm<sup>2</sup>) – this is area hitting collimator



### Aligning Optoboard with beam



- Using photochromic film, one can see where the beam hit the Optoboard
  - Size of spot should be the same as size of collimator used



• Measurement time = 54 s

• 
$$\lim(BER)_{95\%}(0) = 4.34 \cdot 10^{-11}$$

### **IpGBT 3 irradiation**

\_ \_ \_ \_



- Measurement time = 54 s
- $\lim(BER)_{95\%}(0) = 4.34 \cdot 10^{-11}$

### **GBCR 3 irradiation**

\_ \_ \_ \_

