

High-Resolution Spectroscopy of Muonic Lithium

OUARTET

First Steps and Prospects of the QUARTET Experiment

Katharina von Schoeler | ETH Zürich | QUARTET collaboration

Absolute nuclear charge radii & lithium

Precise measurements of low-Z absolute nuclear charge radii are crucial as

- 1. Input for laser spectroscopy of muonic and electronic atoms for
 - Precision QED tests
 - Extraction of fundamental constants
 - ...
- 2. benchmarks for ab-initio nuclear theory
- 3. ...

rms charge radius:

$$\sqrt{\langle r^2 \rangle} = \sqrt{\frac{1}{Ze} \int r^2 \rho(r) \, d\tau}$$
Nuclear charge
density distribution

Lithium nuclear charge radii

As nuclear theory benchmarks

Whole isotopic chain is limited by current best Li charge radii:

 $R_{\rm rms}(^{6}{\rm Li}) = 2.589(39) \,{\rm fm}$

$$R_{rms}(^{7}Li) = 2.444(42) \text{ fm}$$

from elastic electron scattering experiments.

Low-Z charge radius gap

Low-Z charge radius gap

Why is muonic x-ray spectroscopy a problem?

Short reminder

Finite nuclear size effect strongly enhanced in muonic atoms:

 $\Delta E_{FNS} \propto m^3 \Rightarrow \text{factor } 10^7!$

Short reminder

Finite nuclear size effect strongly enhanced in muonic atoms:

 $\Delta E_{FNS} \propto m^3 \Rightarrow \text{factor } 10^7!$

- 1. Muon is captured at high principal quantum number
- 2. Emission of x rays while cascading to ground state
- 3. Detect 2p-1s transition for highest sensitivity to nuclear charge radius

Short reminder

Finite nuclear size effect strongly enhanced in muonic atoms:

 $\Delta E_{FNS} \propto m^3 \Rightarrow \text{factor } 10^7!$

Metallic Magnetic Calorimeter (MMC)

29.08.2024

DOI: 10.1109/TASC.2009.2012724

First test @ Paul Scherrer Institute

High Intensity Proton Accelerator

First test @ Paul Scherrer Institute

PSI

- operated at approx. 20 mK
- 64 absorbers: each 500 μm x 500 μm x 20 μm
- max. rate per pixel ≲1 Hz
- coupled to 32 pairs of two types:

DOI: 10.1007/s10909-024-03141-x

- operated at approx. 20 mK
- 64 absorbers: each 500 μm x 500 μm x 20 μm
- max. rate per pixel $\leq 1 \text{ Hz}$
- coupled to 32 pairs of two types:

Chip-temperature sensitive channel:

DOI: 10.1007/s10909-024-03141-x

 \Rightarrow expected energy resolution:

FWHM ~10 eV @ 20 keV

fitting pulses

Fitting pulses

- 1. Full pulse shapes recorded
- 2. Amplitudes from template fit

Event identification

29.08.2024

Temperature correction

Temperature correction

16

needs calibration

Muonic lithium broadband spectrum

Muonic lithium broadband spectrum

calibration sources ²⁴¹Am, ¹⁰⁹Cd, ⁵⁵Fe

Muonic lithium broadband spectrum

calibration sources ²⁴¹Am, ¹⁰⁹Cd, ⁵⁵Fe & µ⁶Li (95% enriched)

Muonic lithium broadband spectrum

calibration sources ²⁴¹Am, ¹⁰⁹Cd, ⁵⁵Fe & µ⁶Li (95% enriched)

Muonic lithium broadband spectrum

muon entrance in the last 1 µs Muon anticoincidence µ⁶Li 2p→1s Muon coincidence µ⁶Li 3p→1s µ⁷Li µ7Li 3p→1s 2p→1s μLi 4p→1s 19 20 21 22 23

Counts per 1eV

250

200

150

100

50

0

18

events with and without

Energy / keV

Muonic lithium broadband spectrum

calibration sources ²⁴¹Am, ¹⁰⁹Cd, ⁵⁵Fe & µ⁶Li (95% enriched)

Muonic lithium broadband spectrum

calibration sources ²⁴¹Am, ¹⁰⁹Cd, ⁵⁵Fe & µ⁶Li (95% enriched)

 Goal: improving precision of low-Z charge radii, starting with ^{6,7}Li via muonic atom spectroscopy

 Goal: improving precision of low-Z charge radii, starting with ^{6,7}Li via muonic atom spectroscopy

 Method: metallic magnetic calorimeters combining broadband spectroscopy with resolving power of > 10³

 Goal: improving precision of low-Z charge radii, starting with ^{6,7}Li via muonic atom spectroscopy

 Method: metallic magnetic calorimeters combining broadband spectroscopy with resolving power of > 10³

- So far: first successful demonstration of an MMC for muonic atom spectroscopy
 - Background understood and under control
 - Statistical uncertainty: ~ 0.1 eV in 24 h of beam time
 - Current limitation: calibration

 Goal: improving precision of low-Z charge radii, starting with ^{6,7}Li via muonic atom spectroscopy

 Method: metallic magnetic calorimeters combining broadband spectroscopy with resolving power of > 10³

- So far: first successful demonstration of an MMC for muonic atom spectroscopy
 - Background understood and under control
 - Statistical uncertainty: ~ 0.1 eV in 24 h of beam time
 - Current limitation: calibration

- To-do's: next beam time in October 2024
 - Improved and continuous calibration + ADC calibration
 - Physics analysis!

Outlook – QUARTET goals

Lithium nuclear charge radii

Available muonic atom spectroscopy data

Radius uncertainty >100% from 1968 measurement:

Volume 20, Number 10		PHYSICAL	REVIEW LI	ETTERS	4 March 1968
	ENERGY AND WII	DTH MEASUREME	NTS OF LOW- Z	7 PIONIC X-RA	AY TRANSITIONS*
		(Receiv	ed 15 January 196	68)	
Element	E _{ex}	SD.	Radius (fm	n) - Equival	er <mark>t Uniform Charge</mark>
Element	E _{ex} This Work	p Other	Radius (fm This	n) – Equival	ert Uniform Charge Electron Scattering
Element Li ⁶	E _{ex} This Work 18.64 <u>+</u> 0.07	0ther 18.1 +0.4 b	Radius (fm This 4.96	n) – Equival Work 9+6.0	ert Uniform Charge Electron Scattering 3.28 <u>+</u> 0.06 ^e

Measuring nuclear charge radii

Absolute charge radii Relative charge radius changes $R_{c}^{2}(^{6}\text{Li}) \xrightarrow{\delta(r_{c}^{2})^{6,7}} \underbrace{\delta(r_{c}^{2})^{7,8}}_{6\text{Li}} \xrightarrow{\delta(r_{c}^{2})^{8,9}} \underbrace{\delta(r_{c}^{2})^{9,11}}_{9\text{Li}} \xrightarrow{\delta(r_{c}^{2})^{9,11}} \underbrace{\delta(r_{c}^{2})^{9,11}}_{1^{1}\text{Li}}$

- Elastic electron scattering
- Muonic atom spectroscopy

• Isotope shifts from (ordinary) atom spectroscopy

29.08.2024