# Cryogenic Characterization of Neutron-Irradiated SiPMs in view of the LHCb Upgrade II



#### Esteban Currás Rivera

Laboratoire de Physique des Hautes Energies École Polytechnique Fédérale de Lausanne EPFL

Annual Meeting of the Swiss Physical Society 9 – 13 September 2024, ETH Zürich

## Outlook

- Introduction and motivation
- Silicon PhotoMultiplier (SiPM) modules under study and neutron irradiation
- Measurement in the cryostat setup
  - Breakdown voltage (V<sub>bd</sub>) calculation
  - Dark Count Rate (DCR) based on dark current measurements
  - Annealing studies at high temperature (measured only 100 K)
- Summary and next steps

## LHCb upgrade I (2019-2021) The new SciFi detector

- Scintillating Fibre Tracker is installed in the tracking stations located downstream of the LHCb dipole magnet (highlighted in red).
- The scintillation light is recorded with arrays of state-of-the-art multi-channel SiPMs.







### EPFL

0.250 mm Estel

Esteban Currás Rivera (EPFL)

## SiPM challenges for the LHCb Upgrade II (2033)

- More challenging radiation environment
- Mainly dominated by **neutrons**:
  - Neutron radiation expected: 3x10<sup>12</sup> n<sub>eq</sub>/cm<sup>2</sup> (5x Upgrade I)



**Goal: cooling with liquid nitrogen at ~100 K** 

Dark count rate per SiPM channel (DCR)

DCR (not irradiated): 0.04 MHz.

DCR is increasing with neutron radiation.

The SiPMs are positioned far from the beam center.

Neutron radiation expected:  $6 \cdot 10^{11} n_{eq}/cm^2$ .

DCR (6 ·  $10^{11} n_{eq}/cm^2$  @ RT): 550 MHz.

The DCR can be reduced by cooling the SiPM.

DCR (6 · 10<sup>11</sup>  $n_{eq}$ /cm<sup>2</sup> @ -40 °C): 14 MHz.



Upgrade

from

Learned

# 1<sup>st</sup> set of SiPM modules for the testing







## **FBK SiPMs:** V<sub>bd</sub> vs temperature

Breakdown voltage as a function of the temperature



We do not observe any variation with the irradiation fluence (dispersion between different modules  $\sim 0.5$ V)



FBK W4 42um



## **HPK SiPMs:** V<sub>bd</sub> vs temperature

Breakdown voltage as a function of the temperature



H2017: 3e11 n<sub>eq</sub>/cm<sup>2</sup>; Annealed

We do not observe any variation with the irradiation fluence (bigger dispersion between different modules  $\sim 1.0$ V)





## FBK SiPM 42 um: DCR

DCR as a function of the temperature for different over-voltages:

 $DCR = \frac{I_{dark}}{e \times Gain}$ 



- DCR decreases with cooling,  $\sim 10^5$  from room temperature down to 100K (K<sub>1/2</sub> = 10.1 K slope).
- DCR increase proportional with fluence (NIEL hypothesis) only up to  $\sim 1 \times 10^{12} n_{eq}/cm^2$ .

End-life expected working conditions (100K and 4V: ~5x10<sup>4</sup> Hz/ch)



## FBK SiPM 31 um: DCR



 $DCR = \frac{I_{dark}}{e \times Gain}$ 



- Same as for 42µm pixel size but NIEL hypothesis valid up to  $\sim 3 \times 10^{12} n_{eq}/cm^2$ .
- For the same over-voltage shows lower DCR (smaller pixel size == lower gain).

End-life expected working conditions (100K and 4V: ~3x10<sup>4</sup> Hz/ch)



- Best FBK performance in terms of DCR is W9\_31um (lower gain), while the worse is W1\_42um (highest gain)
- H2017 has lower DCR than the latest technology from FBK but also large increase above  $3 \times 10^{12} n_{eq}/cm^2$
- Smaller pixels can be operated at higher fluence!

#### 10.09.2024

#### Esteban Currás Rivera (EPFL)

### FBK SiPM 31 um: Annealing



- Initial annealing after irradiation of 2weeks@30°C.
- Further annealing at 80°C does not reduce the DCR further.
- Only annealing at high temperature (135°C) is reducing DCR.

## **Summary:**

EPFL

- Breakdown voltage as a function of the temperature not linear (visible at cryogenic temperatures)
- DCR reduced by ~10<sup>3</sup> for operation (100 K and 4 V) compared to Upgrade I operation (-60°C)
  - This leads indeed to an almost noise free detector!
- Large DCR increase beyond fluences of  $\sim 1 \times 10^{12} n_{eq}/cm^2$
- Small pixel size (low gain) and low  $\Delta V$  (low gain) are better at high fluences
- Annealing at high temperatures ( > 80°C ) helps to reduce DCR
  - For LHCb Upgrade II only possible low temperature annealing ( < 80°C )

### Next steps:

- A new irradiation campaign is undergoing
  - New H2024 SiPM modules received
  - Single FBK2022 cells to investigate the origin of excess DCR
- New FBK production:
  - Targeting better performance after irradiation: low DCR (low gain)



# Back up

## **Single Photon Avalanche Diode (SPAD)**



SPAD schematic cross section (not to scale)



10.09.2024



Esteban Currás

EPFL

### EPFL

## SiPM modules irradiated at Ljubljana

Irradiated with **neutrons** in Ljubljana (summer 2023)

 $\rightarrow 3x10^{11} n_{eq}/cm^2$ ,  $1x10^{12} n_{eq}/cm^2$ ,  $3x10^{12} n_{eq}/cm^2$  and  $1x10^{13} n_{eq}/cm^2$ 

After irradiation, an annealing of 2 weeks at 30°C was performed

|      |         | Number of detectors irradiated |          |          |          |       | Detector # |          |          |          |  |
|------|---------|--------------------------------|----------|----------|----------|-------|------------|----------|----------|----------|--|
|      |         | Fluence                        |          |          |          |       |            | Fluence  |          |          |  |
|      |         | Α                              | В        | C (ref)  | D        |       | _          | Α        | В        | REF      |  |
| Туре | Wafer # | 1.00E+13                       | 3.00E+12 | 1.00E+12 | 3.00E+11 | Total |            | 1.00E+13 | 3.00E+12 | 1.00E+12 |  |
|      | 1       | 0                              | 0        | 0        | 0        | 0     | ]          |          |          |          |  |
|      | 4       | 1                              | 1        | 1        | 1        | 4     |            | #1       | #2       | #4       |  |
| 16   | 7       | 0                              | 0        | 0        | 0        | 0     |            |          |          |          |  |
|      | 9       | 1                              | 1        | 1        | 1        | 4     |            | #1       | #2       | #3       |  |
|      | 11      | 0                              | 0        | 0        | 0        | 0     |            |          |          |          |  |
|      | 1       | 1                              | 1        | 2        | 1        | 5     | 1          | #5       | #6       | #7, #8   |  |
|      | 4       | 1                              | 1        | 2        | 1        | 5     | 1          | #1       | #2       | #3, #4   |  |
| 31   | 7       | 1                              | 1        | 2        | 1        | 5     | 1          | #1       | #2       | #3, #4   |  |
|      | 9       | 1                              | 1        | 2        | 1        | 5     | 1          | #1       | #2       | #4, #5   |  |
|      | 11      | 1                              | 1        | 2        | 1        | 5     |            | #1       | #2       | #3, #5   |  |
|      | 1       | 0                              | 0        | 0        | 0        | 0     | 1          |          |          |          |  |
|      | 4       | 1                              | 1        | 1        | 1        | 4     | 1          | #1       | #2       | #3       |  |
| 31m  | 7       | 1                              | 1        | 1        | 1        | 4     | 1          | #1       | #2       | #5       |  |
|      | 9       | 1                              | 1        | 1        | 1        | 4     | 1          | #2       | #3       | #4       |  |
|      | 11      | 1                              | 1        | 1        | 1        | 4     | ]          | #1       | #2       | #3       |  |
|      | 1       | 1                              | 1        | 2        | 1        | 5     | 1          | #2       | #3       | #5, #6   |  |
|      | 4       | 1                              | 1        | 2        | 1        | 5     | 1          | #2       | #3       | #6, #8   |  |
| 42   | 7       | 1                              | 1        | 2        | 1        | 5     | ]          | #1       | #2       | #3, #5   |  |
|      | 9       | 1                              | 1        | 2        | 1        | 5     | ]          | #1       | #2       | #3., #4  |  |
|      | 11      | 1                              | 1        | 2        | 1        | 5     |            | #1       | #2       | #3., #4  |  |
| H2   | H2017   |                                | 1        | 1        | 1        | 4     |            | #169     | #205     | #563     |  |
| То   | Total   |                                | 17       | 27       | 17       | 78    |            |          |          |          |  |

One set of H2017 SiPM modules were also included as a reference

D 3.00E+11

#5

#5

#9 #5 #5 #6 #6

#4 #6 #4 #8 #9 #6 #5 #5 #1149



## **Measurement campaign:** V<sub>bd</sub>

Extracting the breakdown voltage

Method of Inverse Logarithmic Derivative (ILD)



10.09.2024

#### Esteban Currás Rivera (EPFL)

## **Quenching resistor and recovery time**

#### FBK\_W4\_31um\_028 (unirradiated)



EPFL