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COntext

of
the project (aim)

The Phase 2 upgrade of the CMS detector enhances its tracking,
calorimetry, and data processing to handle increased luminosity and data
rates at the HL-LHC.



Need for timing

The need for timing measurement with the CMS detector for the HL-LHC
upgrade:

*Pile-Up Mitigation: achieves 30-40 picoseconds resolution to separate
up to 200 overlapping collisions.

*Particle Identification: utilizes precise timing to distinguish particles with
speed differences as small as 0.1%.

*New Physics Sensitivity: improves detection capability for rare events
and particles beyond the standard model.
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Need for timing

How to improve further ?
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TEPX (Tracker Endcap Pixel)

eDisks: 4 per endcap (8 total)
n ePixel Size: 25 x 100 um
- — sRadial Coverage: 60-300 mm

eLongitudinal Position: Up to ~2.7 m from the interaction point
eSensor: Silicon pixel sensors

*Readout: RD53 chip, up to 750 Mb/s per module
y e : ° P ¥ 16 2
@ CMS 'Phase 2 timing covers region up to|n|= 3 Radiation Tolerance: Up to 1.5 x 10'® neg/cm?, 1 Grad

(BTL: LYSO + SiPM, ETL LGAD pads)

@ possible extension to|n]= 4 in 'Phase 3':
replacing 1 or 2 TEPX pixel disks with LGAD pixels

Z [mm]

Credit : Dr. Wolfram Erdmann
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Context

of
the R&D

To design a readout ASIC targeting a future CMS upgrade. It should be
capable of operating with pixel detectors based on LGAD technology. It is
designed in a 28 nm CMOS technology, for timing measurements. 4



pPS| Timing equation
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PSI

Part 1
LGAD Sensor

Sensor performance;
Sensor characterization;
System requirements.

R&D details

Part 2
Behavioral
modeling

Model based design using
MATLAB® Simulink®;
Sensor model;
Architecture of the system;

Performance of each building
block.

Part 3

28nm Technology

- Technology performance;
- Design methodology;
- 28nm CERN Community.




Part 1

PSI LGAD Sensor

Concept of LGAD sensors

- Very thin active thickness ~40 um. E: o UFSD Simulation
- Gain layer provides gain ~10. E 8 TOfO\?igndl 50 um thick
- Time resolution for 1 MIP ~10-30 ps. 5 ’ MIP Signal
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Credit : Matias Senger

Why use the Low Gain Avalanche Diodes ?



Part 1

PSI LGAD Sensor

Type of LGAD sensors : Ti-LGAD

Gain to Gain distance

Types of
LGAD
| I | | |
. Trench

Nominal no-gain width

»
-
-
»”~

* Referred to 1-trench version

V1< 1lum
V2 < 3um
V3 < 4um
V4 <5um

Collaboration with the University of Zurich




Part 1

PSI LGAD Sensor

Characterization of Ti-LGAD sensors (setup)
ETHZ Student project (Fynn Hufler)

Ti-LGAD

...........

Ti-LGAD sensor sample @/;,Q
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PSI
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Part 1

LGAD Sensor

Characterization of Ti-LGAD sensors (results)
ETHZ Student project (Fynn Hufler)
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o 3 -sigma, o = 3.99e-02
S Mean u = 1.26e-01

v’ Capacitance measurements of Ti-LGAD sensors showed uniform values with stable performance
across conditions and mean capacitance for single pixels between 0.63 - 0.70 pF.
v The expected features of the generated signals were confirmed.
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100 x 100 um? / 200 x 200u pum?
~ 1 pF (including parasitic)
500 KHz to 1 MHZ per pixel
< 250 ns

Total powerdensity |

Threshold level |
Equivalent 1000 e to 100 Ke-

Pixel rate at hottest pixel [N <zV:

Part 1
PS|

System requirement

State of the art study to propose different solutions

Defining the specifications of the preamplifier;
Defining the technique to measure time;
Testing the resolution limit of the selected
solutions;

Integrating error corrections;

11



Part 2
PSI

Model Base design concept

——————————————————————————————————————
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Defining the best parameters to achieve the desired specifications with efficiency using the model based
design approach: implementation in MATLAB® for ASIC design.
12



Part 2

Behavioral modeling

Implementation in MATLAB® SIMULINK ©
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In this first step, we focus on studying the effect of the key parameters of the preamplifier on the timing
resolution (few Ke™signals) using an ideal Discriminator and TDC. The integration between the sensor and
the preamp is modeled as well. 13



Part 2

Behavioral modeling

Results of the modeling of sensor + preamp stage
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Ghimouz, A. (2024). R&D of a timing measurement ASIC for possible HL-LHC upgrade. Nuclear Instruments and Methods in Physics Research Section a Accelerators Spectrometers Detectors and Associated Equipment, 1 4
169802. https://doi.org/10.1016/j.nima.2024.169802



Part 3

28nm Technology
Why 28 nm ? (CERN Community)

PSI

From a Moore PoV

From a performance PoV

28nm: Optimal Balance of Cost and Power for 2015 Devices , _ . )
28nm has a very interesting response &t ultra-high TID! 1

Shrinking chips
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Performance compared to 65 nm: gegis QRPN RDy

Pros : x 4-5 gate density increase > x 2 faster
Cons : x 50 leakage increase — can be reduced by exploiting multi-vt and multi-gl designs 15
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Noise

Part 3

28nm Technology

Design methodology : Exploring the gm/ Ip

Strong Inversion

Moderate Inversion
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Why analog design is challenging ?
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Credit : Boris Murmann
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The g"‘/,D methodology uses the ratio of transconductance to drain current to optimize analog circuit design.
By generating lookup tables from SPICE simulations, designers can quickly evaluate performance metrics and

Om
CQQ

Part3
28nm Technology

Design methodology : Exploring the gm/ Ip

[ Specifications ]
v
One-time [Lookup Tables]—»(Calculatlon Scnpt]
Generation)

Spice j [ Circuit ]

A v
[ BSIM or PSPH Spice ]
v

[ Results j

Credit : Boris Murmann

efficiently achieve desired specifications.
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Part3
28nm Technology

The extraction of the gm/,D Lookup tables of the 28nm technology

Efficiency

In/Wwvs.gn/Ip for selected L values
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The concept of the targeted ASIC

Discriminator Digital readout

Amplifier Comparator - Communication
Compensation DACs SHE R E system
system (leakage) Voltage T - Correction

Bias system references Memory

Memory
buffer

The First Gen of the proposed ASIC is aimed to test different flavors and timing measurement concepts.
It is designed to be integrated with the Ti-LGAD sensors (Hybrid configuration).

19



PSI ' (SIPS) Conclusion

| swiss physical society

 The Initial system specifications are confirmed = A multiflavored, multichannel chip is
under development.

* The Behavioral Model is continuously evolving = Studying multiple solutions to reach the
timing requirements = multi-flavors chip

* Exploring 28nm CMOS technology = Lookup table extracted, and first design test results
are obtained.

» The project carried out in collaboration with PSI, UZH, CERN 28nm Community and
CERN DRD3/7.

Time 1s neither friend nor

enemy 1t's just a measurement.

Michael Dolan
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Thank you
Questions are welcome

ABDERRAHMANE GHIMOUZ

10th Sep. 2024
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ANNEXE



Part 3

PSI 28nm Technology

Technology performance (test case)
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