

Search for the $B^+ \to \tau^+ \nu$ decay channel **at the LHCb experiment at CERN**

SPS Annual Meeting 2024

Rita Ataíde da Silva, Alexandre Brea Rodriguez and Frédéric Blanc

- **This pure leptonic B decay allows for precise tests** of the Standard Model predictions
	- o Enables a clean direct experimental determination of V_{ub} (V_{cb})

$$
\mathcal{B}(B^+ \to \tau^+ \nu) = \frac{G_F^2 m_B}{8\pi} m_\tau^2 \left(1 - \frac{m_\tau^2}{m_B^2}\right)^2 f_b^2 |V_{ub}|^2 \tau_B
$$

SM: $B(B^+ \to \tau^+ \nu) = (0.93 \pm 0.10) \times 10^{-4}$

- **This pure leptonic B decay allows for precise tests** of the Standard Model predictions
	- o Enables a clean direct experimental determination of V_{ub} (V_{cb})
- **This decay has not been yet observed at LHCb.**

$$
\mathcal{B}(B^+ \to \tau^+ \nu) = \frac{G_F^2 m_B}{8\pi} m_\tau^2 \left(1 - \frac{m_\tau^2}{m_B^2}\right)^2 f_b^2 |V_{ub}|^2 \tau_B
$$

SM:
$$
B(B^+ \rightarrow \tau^+ \nu) = (0.93 \pm 0.10) \times 10^{-4}
$$

Measured by Belle $[1,2]$ $[1,2]$ and BABAR $[3, 4]$ $[3, 4]$ $B(B^+ \to \tau^+ \nu) = (1.09 \pm 0.24) \times 10^{-4}$

- **This pure leptonic B decay allows for precise tests** of the Standard Model predictions
	- o Enables a clean direct experimental determination of V_{ub} (V_{cb})
- **This decay has not been yet observed at LHCb.**
- **EXECT:** Serves as a valuable probe for searching for new physics:
	- o Supersymmetry, **two-Higgs-doublet models**, etc.

$$
\mathcal{B}(B^+ \to \tau^+ \nu) = \frac{G_F^2 m_B}{8\pi} m_\tau^2 \left(1 - \frac{m_\tau^2}{m_B^2}\right)^2 f_b^2 |V_{ub}|^2 \tau_B
$$

SM:
$$
B(B^+ \rightarrow \tau^+ \nu) = (0.93 \pm 0.10) \times 10^{-4}
$$

Measured by Belle $[1,2]$ $[1,2]$ and BABAR $[3, 4]$ $[3, 4]$ $B(B^+ \to \tau^+ \nu) = (1.09 \pm 0.24) \times 10^{-4}$

- This pure leptonic B decay allows for precise tests of the Standard Model predictions
	- o Enables a clean direct experimental determination of V_{ub} (V_{cb})
- **This decay has not been yet observed at LHCb.**
- **EXECT:** Serves as a valuable probe for searching for new physics:
	- o Supersymmetry, **two-Higgs-doublet models**, etc.
- $B_c^+ \rightarrow \tau^+ \nu$ has never been observed.

$$
\mathcal{B}(B^+ \to \tau^+ \nu) = \frac{G_F^2 m_B}{8\pi} m_\tau^2 \left(1 - \frac{m_\tau^2}{m_B^2}\right)^2 f_b^2 |V_{ub}|^2 \tau_B
$$

SM:
$$
B(B^+ \rightarrow \tau^+ \nu) = (0.93 \pm 0.10) \times 10^{-4}
$$

Measured by Belle $[1,2]$ $[1,2]$ and BABAR $[3, 4]$ $[3, 4]$ $B(B^+ \to \tau^+ \nu) = (1.09 \pm 0.24) \times 10^{-4}$

Reconstruction strategy for $B^+ \to \tau^+ \nu$

• We aim to reconstruct the decay mode $\tau^+ \to \pi^+ \pi^- \pi^+ \overline{\nu_{\tau}}$

 $\mathcal{B}(\tau^+ \to \pi^+ \pi^- \pi^+ \bar{\nu_\tau}) = (9.31 \pm 0.05) \, \%$

Main Challenges

■ We cannot directly reconstruct the secondary vertex (SV):

- Only three pion tracks (TV) and the primary vertex (PV) are available.
- Two neutrinos in the final state.

- **E** Numerous physics processes can contribute to the background.
	- o Challenging hadronic environment at LHCb.

Simulation

■ RapidSim:

- o It is a fast Monte Carlo generator for simulation of heavy-quark hadron decays.
- o Does not contain the simulation of the detectors and their response.
- \circ Generated the decay $B^+ \to (\tau^+ \to \pi^+ \pi^- \pi^+ \bar{\nu_\tau}) \nu$.
- o Simulated 100k events.

1. First Strategy:

 \circ Assume \vec{p}_y is in the same direction as $\vec{p}_{3\pi}$

- \circ Assume \vec{p}_y is in the same direction as $\vec{p}_{3\pi}$
- \circ Reconstruct \vec{p}_{τ} , imposing M_{τ}

- \circ Assume \vec{p}_y is in the same direction as $\vec{p}_{3\pi}$
- \circ Reconstruct \vec{p}_{τ} , imposing M_{τ}
- o Use tau decay time to calculate flight distance and get SV

- \circ Assume \vec{p}_y is in the same direction as $\vec{p}_{3\pi}$
- \circ Reconstruct \vec{p}_{τ} , imposing M_{τ}
- o Use tau decay time to calculate flight distance and get SV

- \circ Assume \vec{p}_y is in the same direction as $\vec{p}_{3\pi}$
- \circ Reconstruct \vec{p}_{τ} , imposing M_{τ}
- o Use tau decay time to calculate flight distance and get SV

1. First Strategy:

- \circ Assume \vec{p}_y is in the same direction as $\vec{p}_{3\pi}$
- \circ Reconstruct \vec{p}_{τ} , imposing M_{τ}
- o Use tau decay time to calculate flight distance and get SV
- \circ Estimate B^+ corrected mass

2. Second Strategy:

- o Use Machine Learning (NN) to predict SV, using RapidSim dataset
	- Input variables: \vec{p}_{π^+} , \vec{p}_{π^-} , \vec{p}_{π^+} , PV, TV, $m_{3\pi}$
- Estimate B^+ corrected mass, with $\vec{p}_v \parallel \vec{p}_{3\pi}$ to reconstruct \vec{p}_τ

B corrected mass distribution

$$
M_{corr}^B = \sqrt{m_{\tau}^2 + p_{\perp}^2 + p_{\perp}}
$$

Green: assuming $\vec{p}_{\nu} \parallel \vec{p}_{3\pi}$ and using true SV Blue: assuming $\vec{p}_{\nu} \parallel \vec{p}_{3\pi}$ and using tau lifetime to calculate SV

Orange: assuming $\vec{p}_{\nu} \parallel \vec{p}_{3\pi}$ and using ML technique to obtain SV

 \hat{f} : tau flight direction

$$
\hat{f} = \frac{\overrightarrow{TV} - \overrightarrow{SV}}{|\overrightarrow{TV} - \overrightarrow{SV}|}
$$

Orthogonal basis

$$
\hat{x} = (-\hat{f}_y, \hat{f}_x, 0)
$$

$$
\hat{y} = \hat{f} \times \hat{x}
$$

$$
\hat{z} = \hat{f}
$$

$$
\vec{p}'_{3\pi}
$$
\n
$$
\vec{p}'_{\nu} = (-p'_{3\pi x}, -p'_{3\pi y}, p'_L)
$$

In this orthogonal basis:

$$
p'_T = \sqrt{p'_{3\pi}^2 + p'_{3\pi}^2}
$$

 \hat{f} : tau flight direction

$$
\hat{f} = \frac{\overrightarrow{TV} - \overrightarrow{SV}}{|\overrightarrow{TV} - \overrightarrow{SV}|}
$$

Orthogonal basis $\hat{x} = (-\widehat{f}_y, \widehat{f}_x, 0)$ $\hat{y} = \hat{f} \times \hat{x}$ $\hat{z} = \hat{f}$

In this orthogonal basis: $\vec{p}^\prime_{3\pi}$

$$
\vec{p}'_v = \left(-p'_{3\pi x}, -p'_{3\pi y}, p'_L\right)
$$

$$
\vec{p}'_T = \sqrt{p'^{2}_{3\pi x} + p'^{2}_{3\pi y}}
$$

We constrain the τ mass (M_{τ}) and use energy conservation:

 $M_{\tau}^2 = (E_{3\pi} + E_{\nu})^2 - (\vec{p}_{3\pi} + \vec{p}_{\nu}')^2$

 \hat{f} : tau flight direction

$$
\hat{f} = \frac{\overrightarrow{TV} - \overrightarrow{SV}}{|\overrightarrow{TV} - \overrightarrow{SV}|}
$$

Orthogonal basis $\hat{x} = (-\widehat{f}_y, \widehat{f}_x, 0)$ $\hat{y} = \hat{f} \times \hat{x}$ $\hat{z} = \hat{f}$

In this orthogonal basis: $\vec{p}^\prime_{3\pi}$

$$
p'_T = \sqrt{p'^{\,2}_{3\pi\,x} + p'^{\,2}_{3\pi\,y}}
$$

 $\vec{p}'_{\nu}=\left(-p'_{3\pi\,\chi}$, $-p'_{3\pi\,y}$, p'_{L}

We constrain the τ mass (M_{τ}) and use energy conservation:

$$
M_{\tau}^{2} = (E_{3\pi} + E_{\nu})^{2} - (\vec{p}_{3\pi}^{\prime} + \vec{p}_{\nu}^{\prime})^{2}
$$

$$
A = \frac{M_{\tau}^{2} - M_{3\pi}^{2}}{2}
$$

$$
p_{L}^{\prime} = \frac{p_{3\pi z}^{\prime}(A - p_{T}^{\prime})^{2} \pm E_{3\pi}\sqrt{A^{2} - p_{T}^{\prime 2}M_{\tau}^{2}}}{E_{3\pi}^{2} - p_{3\pi z}^{\prime 2}}
$$

In this orthogonal basis:

Orthogonal basis $\hat{x} = (-\widehat{f}_y, \widehat{f}_x, 0)$ $\hat{y} = \hat{f} \times \hat{x}$ $\hat{z} = \hat{f}$

$$
\vec{p}'_{3\pi}
$$
\n
$$
\vec{p}'_{\nu} = (-p'_{3\pi x}, -p'_{3\pi y}, p'_L)
$$
\n
$$
\vec{p}'_{T} = \sqrt{p'_{3\pi x}^{2} + p'_{3\pi y}^{2}}
$$

We constrain the τ mass (M_{τ}) and use energy conservation:

 \hat{f} : tau flight direction

$$
\hat{f} = \frac{\overrightarrow{TV} - \overrightarrow{SV}}{|\overrightarrow{TV} - \overrightarrow{SV}|}
$$

Orthogonal basis

 $\hat{x} = (-\widehat{f}_y, \widehat{f}_x, 0)$ $\hat{y} = \hat{f} \times \hat{x}$ $\hat{z} = \hat{f}$

$$
\vec{p}'_{3\pi}
$$
\n
$$
\vec{p}'_{\nu} = (-p'_{3\pi x}, -p'_{3\pi y}, p'_L)
$$
\n
$$
\vec{p}'_{T} = \sqrt{p'_{3\pi x}^2 + p'_{3\pi y}^2}
$$

In this orthogonal basis:

We constrain the τ mass (M_{τ}) and use energy conservation:

same condition for the first neutrino

$$
p'_T < \frac{M_B^2 - M_\tau^2}{2M_B}
$$

1. Create a grid around TV, select the points that pass the conditions

- 1. Create a grid around TV, select the points that pass the conditions
	- \circ Using the true variables, we observed \vec{p}_{τ} is roughly aligned with $\vec{p}_{3\pi}$
	- o Generate a grid around tau flight direction given by previous strategies

- 1. Create a grid around TV, select the points that pass the conditions
	- \circ Using the true variables, we observed \vec{p}_{τ} is roughly aligned with $\vec{p}_{3\pi}$
	- o Generate a grid around tau flight direction given by previous strategies
- 2. Select events according to the clusters:
	- o 50% of the events showed a well separated cluster between TV and PV.

- 1. Create a grid around TV, select the points that pass the conditions
	- \circ Using the true variables, we observed \vec{p}_{τ} is roughly aligned with $\vec{p}_{3\pi}$
	- o Generate a grid around tau flight direction given by previous strategies
- 2. Select events according to the clusters:
	- o 50% of the events showed a well separated cluster between TV and PV.
- 3. Calculate the centroid of this cluster and use it as SV.

- 1. Create a grid around TV, select the points that pass the conditions
	- \circ Using the true variables, we observed \vec{p}_{τ} is roughly aligned with $\vec{p}_{3\pi}$
	- o Generate a grid around tau flight direction given by previous strategies
- 2. Select events according to the clusters:
	- o 50% of the events showed a well separated cluster between TV and PV.
- 3. Calculate the centroid of this cluster and use it as SV.

September 2024 SPS Annual Meeting - Rita Silva 11

B corrected mass distribution with predicted SV

B corrected mass distribution with predicted SV

B corrected mass distribution with predicted SV

September 2024 SPS Annual Meeting - Rita Silva 12

Background Study

- **Minimum Bias MC 2018 (MU/MD) Sample**
	- o Simulation that is similar to real data
- 1.5k events passing offline selection
	- o In 31% of events, the three pions decayed from the same particle

Background Study

- **Minimum Bias MC 2018 (MU/MD) Sample**
	- o Simulation that is similar to real data
- 1.5k events passing offline selection
	- o In 31% of events, the three pions decayed from the same particle
	- \circ 14 events involving a τ lepton

Background Study

- **Minimum Bias MC 2018 (MU/MD) Sample**
	- \circ Simulation that is similar to real
- **1.5k events passing offline selection**
	- \circ In 31% of events, the three pions from the same particle
	- \circ 14 events involving a τ lepton
	- o Only 4 events of signal

Background Study: $D_s^+ \rightarrow \tau^+ \nu$

- We generated 100k events of $D_s^+ \rightarrow \tau^+\nu$ using RapidSim.
- Applied the same strategy: only 20k events passed the selection.

Conclusions

- **•** We propose to measure the branching fraction of the $B^{\pm} \rightarrow \tau^+ \nu$ process.
- We found a strategy that solves the kinematics in our signal.
- There are a lot of processes that will contribute as background
	- o Already showed that the strategy allows to separate D_s^+ −> τ^+ v and the signal.

Next Steps:

- o Test the strategy on Full LHCb MC simulation.
- o Design a strategy to separate the signal from the background.

Conclusions

- **•** We propose to measure the branching fraction of the $B^{\pm} \rightarrow \tau^+ \nu$ process.
- We found a strategy that solves the kinematics in our signal.
- There are a lot of processes that will contribute as background
	- o Already showed that the strategy allows to separate D_s^+ −> τ^+ v and the signal.

Next Steps:

- o Test the strategy on Full LHCb MC simulation.
- o Design a strategy to separate the signal from the background.

Thank you for your attention!

Backup slides

September 2024 SPS Annual Meeting - Rita Silva

LHCb Experiment

- Located at the Large Hadron Collider (LHC) at CERN.
- **Proton-proton collisions at 13 TeV.**
- **E** Single-arm forward spectrometer covering $2 < \eta < 5$.
- **Tracking: VELO, a high-precision tracking system (TT, T1, T2, II, T2, II, T2, II, T3, II, T3, II, T3, II, T3, I** T3);
- Particle Identification: RICH; ECAL, HCAL, Muon stations.

Efficiency of the Stripping line

- **The stripping line has an efficiency of** $(0.84 \pm 0.42)\%$
- **Taking into account the LHCb** B^+ **production cross section and the decay branching fraction:**

Total amount of B^+ in Run 2: $(1.17 \pm 0.09) \times 10^{12}$

Expected amount of signal in Run2: $(1.27 \pm 0.30) \times 10^8$

Expected amount of signal after stripping: $(1.1 \pm 0.6) \times 10^6$

Proof: First strategy – neutrino aligned with 3pi

1.2 Considering the case of $p_T = 0$

$$
M_{\tau}^{2} = (E_{\pi\pi\pi} + E_{\bar{\nu}})^{2} - |\vec{p}\rangle_{\pi\pi\pi} + |\vec{p}\rangle_{\bar{\nu}}|^{2} =
$$

$$
E_{\pi\pi\pi}^{2} + E_{\bar{\nu}}^{2} + 2E_{\pi\pi\pi}.E_{\bar{\nu}} - p_{\pi\pi\pi}^{2} - p_{\bar{\nu}}^{2} - 2\vec{p}\rangle_{\pi\pi\pi}.\vec{p}\,_{\bar{\nu}} =
$$

$$
M_{\pi\pi\pi}^{2} + p_{\pi\pi\pi}^{2} + p_{\bar{\nu}}^{2} + 2E_{\pi\pi\pi}.E_{\bar{\nu}} - p_{\pi\pi\pi}^{2} - p_{\bar{\nu}}^{2} - 2\vec{p}\rangle_{\pi\pi\pi}.\vec{p}\,_{\bar{\nu}}
$$
(11)

$$
M_{\tau}^2 = M_{\pi\pi\pi}^2 + 2(E_{\pi\pi\pi\cdot}E_{\nu} - \overrightarrow{p}_{\pi\pi\pi\cdot}\overrightarrow{p}_{\bar{\nu}})
$$
 (12)

where

$$
E_{\pi\pi\pi} = \sqrt{M_{\pi\pi\pi}^2 + |\vec{p}'_{\pi\pi\pi}|^2}
$$
 (13)

and

$$
E_{\bar{\nu}} = p_{\bar{\nu}} \tag{14}
$$

Taking into account the 3-pion momenta and the neutrino momentum are parallel

$$
\overrightarrow{p}_{\pi\pi\pi}.\overrightarrow{p}_{\bar{\nu}} = p_{\pi\pi\pi} . p_{\bar{\nu}} \tag{15}
$$

We obtain

$$
M_{\tau}^2 = M_{\pi\pi\pi}^2 + 2(E_{\pi\pi\pi} \cdot p_{\bar{\nu}} - p_{\pi\pi\pi} \cdot p_{\bar{\nu}})
$$
(16)

As a result

$$
p_{\bar{\nu}} = \frac{M_{\tau}^2 - M_{\pi\pi\pi}^2}{2.(E_{\pi\pi\pi} - p_{\pi\pi\pi})}
$$
(17)

Machine Learning Model for SV Reconstruction

• **Algorithm and Model Architecture**:

- Neural network for regression
- Architecture:
	- Input layer: Xtrain_scaled*X*train_scaled features
	- Hidden layers: 2 layers with 64 neurons each, ReLU activation
	- Output layer: 3 neurons, linear activation (for 3 coordinates)

• **Data Processing**:

• Input features scaled using StandardScaler

• **Training Details**:

- Optimizer: Adam
- Loss Function: Mean Squared Error (MSE)
- Validation Split: 20%
- Epochs: 100
- Batch Size: 32
- **Performance Evaluation**:
	- Model evaluated on test data
- **Predictions**:
	- Model predicts three coordinates for the secondary vertex

September 2024 SPS Annual Meeting - Rita Silva 42

Proof: conditions from strategy

 \hat{f} : flight direction

Orthogonal basis

$$
\hat{f} = \frac{\overrightarrow{TV} - \overrightarrow{SV}}{|\overrightarrow{TV} - \overrightarrow{SV}|}
$$

 $\hat{x} = (-\widehat{f}_y, \widehat{f}_x, 0)$ $\hat{y} = \hat{f} \times \hat{x}$ $\hat{z} = \hat{f}$

In this orthogonal basis:

 $\vec{p}^\prime_{3\pi}$ $\vec{p}'_{\nu}=\left(-p'_{3\pi\,\chi}$, $-p'_{3\pi\,y}$, p'_{L} $p_T' = \sqrt{p_{3\pi}^{\prime 2} x + p_{3\pi}^{\prime 2} y}$

We impose the τ mass:

$$
M_{\tau}^{2} = (E_{3\pi} + E_{\nu})^{2} - (p_{3\pi}^{2} + p_{\nu}^{2})^{2}
$$

\n
$$
M_{\tau}^{2} = E_{3\pi}^{2} + E_{\nu}^{2} + 2E_{3\pi}E_{\nu} - p_{3\pi}^{'2} - p_{\nu}^{2} - 2p_{3\pi}^{'} \cdot \vec{p}_{\nu}
$$

\n
$$
M_{\tau}^{2} = M_{3\pi}^{2} + p_{3\pi}^{'2} + M_{\nu}^{2} + p_{\nu}^{2} + 2E_{3\pi}E_{\nu} - p_{3\pi}^{'2} - p_{\nu}^{2} - 2p_{3\pi}^{'} \cdot \vec{p}_{\nu}
$$

\n
$$
M_{\tau}^{2} = M_{3\pi}^{2} + 2E_{3\pi}E_{\nu} - 2p_{3\pi}^{'} \cdot \vec{p}_{\nu}
$$

\n
$$
M_{\tau}^{2} = M_{3\pi}^{2} + 2(E_{3\pi}E_{\nu} - p_{3\pi}^{'} \cdot \vec{p}_{\nu})
$$

\n(1)

using:

$$
p_{3\pi}^{\pi'} = \left(p_{3\pi x}^{\pi x} \hat{x}, p_{3\pi y}^{\pi y} \hat{y}, p_{3\pi z}^{\pi x} \hat{f}\right)
$$

\n
$$
p_{\nu}^{\pi} = (-p_{3\pi x}^{\pi x} \hat{x}, -p_{3\pi y}^{\pi y} \hat{y}, p_L)
$$
\n(2)

we can rewrite this as:

$$
\vec{p}_{3i}^{\prime} \cdot p_y^{\prime} = -p_{3+2}^2 - p_{3\pi}^2 + p_{3\pi 2}^{\prime} p_2 = -p_{1}^2 + p_{3in}^{\prime} = p_2
$$
\n
$$
\frac{M_{\tau}^2 - M_{3\pi}^2}{2} = E_{3\pi} E_{\nu} + P_{T}^2 - P_{3\pi z}^{\prime} P_L
$$
\n(3)

Assuming $M_{\nu} = 0$ $(E_{\nu} = p_{\nu})$, we define A as:

$$
A = \frac{M_{\tau}^2 - M_{3\pi}^2}{2} \tag{4}
$$

with this we have:

$$
A = E_{3\pi} \sqrt{p_T^2 + p_L^2} + p_T^2 + p_{3\pi z} p_L \tag{5}
$$

Definying now B, C, D and x as:

$$
B = p_T
$$

\n
$$
C = p_{3\pi z}
$$

\n
$$
D = E_{3\pi}
$$

\n
$$
x = p_L
$$
\n(6)

Proof: conditions from strategy

We impose the τ mass:

$$
M_{\tau}^{2} = (E_{3\pi} + E_{\nu})^{2} - (p_{3\pi}^{2} + p_{\nu}^{2})^{2}
$$

\n
$$
M_{\tau}^{2} = E_{3\pi}^{2} + E_{\nu}^{2} + 2E_{3\pi}E_{\nu} - p_{3\pi}^{'2} - p_{\nu}^{2} - 2p_{3\pi}^{'} \cdot \vec{p}_{\nu}
$$

\n
$$
M_{\tau}^{2} = M_{3\pi}^{2} + p_{3\pi}^{'} + M_{\nu}^{2} + p_{\nu}^{2} + 2E_{3\pi}E_{\nu} - p_{3\pi}^{'2} - p_{\nu}^{2} - 2p_{3\pi}^{'} \cdot \vec{p}_{\nu}
$$

\n
$$
M_{\tau}^{2} = M_{3\pi}^{2} + 2E_{3\pi}E_{\nu} - 2p_{3\pi}^{'} \cdot \vec{p}_{\nu}
$$

\n
$$
M_{\tau}^{2} = M_{3\pi}^{2} + 2(E_{3\pi}E_{\nu} - p_{3\pi}^{'} \cdot \vec{p}_{\nu})
$$

\n(1)

using:

$$
p_{3\pi}^{\pi'} = \left(p_{3\pi x}^{\pi x} \hat{x}, p_{3\pi y}^{\pi y} \hat{y}, p_{3\pi z}^{\pi x} \hat{f}\right)
$$

\n
$$
\vec{p}_{\nu} = (-p_{3\pi x}^{\pi x} \hat{x}, -p_{3\pi y}^{\pi y} \hat{y}, p_L)
$$
\n(2)

we can rewrite this as:

$$
\vec{p}_{3i}^{\prime} \cdot \vec{p}_y^{\prime} = -\vec{p}_{3+2}^2 - \vec{p}_{3\pi}^2 + \vec{p}_{3\pi 2}^{\prime} \vec{p}_2 = -\ \hat{p}_t^2 + \vec{p}_{3in}^{\prime} = p_2
$$
\n
$$
\frac{M_\tau^2 - M_{3\pi}^2}{2} = E_{3\pi} E_\nu + P_T^2 - P_{3\pi z}^{\prime} P_L \tag{3}
$$

Assuming $M_{\nu} = 0$ $(E_{\nu} = p_{\nu})$, we define A as:

$$
A = \frac{M_{\tau}^2 - M_{3\pi}^2}{2} \tag{4}
$$

with this we have:

$$
A = E_{3\pi} \sqrt{p_T^2 + p_L^2} + p_T^2 + p_{3\pi z} p_L \tag{5}
$$

Definying now B, C, D and x as:

$$
B = p_T
$$

\n
$$
C = p_{3\pi z}
$$

\n
$$
D = E_{3\pi}
$$

\n
$$
r = p_L
$$

\n(6)

$$
A = D\sqrt{B^2 + x^2 + B^2 - Cx}
$$

\n
$$
(A - B^2 + Cx)^2 = (D\sqrt{B^2 + x^2})^2
$$

\n
$$
A^2 + B^4 + C^4x^2 - 2AB^2 + 2ACx - 2B^2Cx = D^2(B^2 + x^2)
$$
\n(7)

After some manipulation we arrive at an expression for x, i.e. p_L :

$$
p_L = \frac{p_{3\pi z} \left(A - p_T^2\right) \pm E_{3\pi} \sqrt{A^2 - p_T^2 M_\tau^2}}{E_{3\pi}^2 - p_{3\pi z}^2} \tag{8}
$$

Allowing us to arrive at the conditions:

$$
p_T^2 < \frac{M_\tau^2 - M_{3\pi}^2}{2M_\tau} \tag{9}
$$

and for the other vertex:

$$
p_T^2 < \frac{M_B^2 - M_\tau^2}{2M_B} \tag{10}
$$

September 2024 SPS Annual Meeting - Rita Silva 44

Distance SV true – SV predicted

September 2024 SPS Annual Meeting - Rita Silva 45

Background Study: $D_s^+ \rightarrow \tau^+ \nu$

Difference between SV TRUE and SV predicted by the strategy

Full Simulation

September 2024 SPS Annual Meeting - Rita Silva 47

Preliminary Full Simulation

September 2024 SPS Annual Meeting - Rita Silva 48