

Search for the $B^+ \rightarrow \tau^+ \nu$ decay channel at the LHCb experiment at CERN

SPS Annual Meeting 2024

Rita Ataíde da Silva, Alexandre Brea Rodriguez and Frédéric Blanc

- This pure leptonic B decay allows for precise tests of the Standard Model predictions
 - Enables a clean direct experimental determination of V_{ub} (V_{cb})

$$\mathcal{B}(B^+ \to \tau^+ \nu) = \frac{G_F^2 m_B}{8\pi} m_\tau^2 \left(1 - \frac{m_\tau^2}{m_B^2}\right)^2 f_b^2 |V_{ub}|^2 \tau_B$$

SM: $\mathcal{B}(B^+ \to \tau^+ \nu) = (0.93 \pm 0.10) \times 10^{-4}$

- This pure leptonic B decay allows for precise tests of the Standard Model predictions
 - Enables a clean direct experimental determination of V_{ub} (V_{cb})
- This decay has not been yet observed at LHCb.

$$\mathcal{B}(B^+ \to \tau^+ \nu) = \frac{G_F^2 m_B}{8\pi} m_\tau^2 \left(1 - \frac{m_\tau^2}{m_B^2}\right)^2 f_b^2 |V_{ub}|^2 \tau_B$$

SM:
$$\mathcal{B}(B^+ \to \tau^+ \nu) = (0.93 \pm 0.10) \times 10^{-4}$$

Measured by Belle [1,2] and BABAR [3, 4]
$$\mathcal{B}(B^+ \rightarrow \tau^+ \nu) = (1.09 \pm 0.24) \times 10^{-4}$$

- This pure leptonic B decay allows for precise tests of the Standard Model predictions
 - Enables a clean direct experimental determination of V_{ub} (V_{cb})
- This decay has not been yet observed at LHCb.
- Serves as a valuable probe for searching for new physics:
 - Supersymmetry, two-Higgs-doublet models, etc.

$$\mathcal{B}(B^+ \to \tau^+ \nu) = \frac{G_F^2 m_B}{8\pi} m_\tau^2 \left(1 - \frac{m_\tau^2}{m_B^2}\right)^2 f_b^2 |V_{ub}|^2 \tau_B$$

SM:
$$\mathcal{B}(B^+ \to \tau^+ \nu) = (0.93 \pm 0.10) \times 10^{-4}$$

Measured by Belle [<u>1,2</u>] and BABAR [<u>3</u>, <u>4</u>] $\mathcal{B}(B^+ \rightarrow \tau^+ \nu) = (1.09 \pm 0.24) \times 10^{-4}$

- This pure leptonic B decay allows for precise tests of the Standard Model predictions
 - Enables a clean direct experimental determination of V_{ub} (V_{cb})
- This decay has not been yet observed at LHCb.
- Serves as a valuable probe for searching for new physics:
 - Supersymmetry, two-Higgs-doublet models, etc.
- $B_c^+ \rightarrow \tau^+ \nu$ has never been observed.

$$\mathcal{B}(B^+ \to \tau^+ \nu) = \frac{G_F^2 m_B}{8\pi} m_\tau^2 \left(1 - \frac{m_\tau^2}{m_B^2}\right)^2 f_b^2 |V_{ub}|^2 \tau_B$$

SM:
$$\mathcal{B}(B^+ \to \tau^+ \nu) = (0.93 \pm 0.10) \times 10^{-4}$$

Measured by Belle [<u>1,2</u>] and BABAR [<u>3, 4</u>] $\mathcal{B}(B^+ \rightarrow \tau^+ \nu) = (1.09 \pm 0.24) \times 10^{-4}$

Reconstruction strategy for $B^+ ightarrow au^+ u$

• We aim to reconstruct the decay mode $\tau^+ \rightarrow \pi^+ \pi^- \pi^+ \overline{\nu_{\tau}}$

 $\mathcal{B}(\tau^+ \to \pi^+ \pi^- \pi^+ \bar{\nu_\tau}) = (9.31 \pm 0.05) \%$

Main Challenges

• We cannot directly reconstruct the secondary vertex (SV):

- Only three pion tracks (TV) and the primary vertex (PV) are available.
- Two neutrinos in the final state.

- Numerous physics processes can contribute to the background.
 - Challenging hadronic environment at LHCb.

Simulation

• RapidSim:

- It is a fast Monte Carlo generator for simulation of heavy-quark hadron decays.
- Does not contain the simulation of the detectors and their response.
- Generated the decay $B^+ \rightarrow (\tau^+ \rightarrow \pi^+ \pi^- \pi^+ \overline{\nu_{\tau}}) \nu$.
- o Simulated 100k events.

1. First Strategy:

• Assume \vec{p}_{ν} is in the same direction as $\vec{p}_{3\pi}$

- Assume \vec{p}_{ν} is in the same direction as $\vec{p}_{3\pi}$
- o Reconstruct $ec{p}_{ au}$, imposing $M_{ au}$

- Assume \vec{p}_{ν} is in the same direction as $\vec{p}_{3\pi}$
- o Reconstruct $ec{p}_{ au}$, imposing $M_{ au}$
- Use tau decay time to calculate flight distance and get SV

- Assume \vec{p}_{ν} is in the same direction as $\vec{p}_{3\pi}$
- o Reconstruct $ec{p}_{ au}$, imposing $M_{ au}$
- Use tau decay time to calculate flight distance and get SV

- Assume \vec{p}_{ν} is in the same direction as $\vec{p}_{3\pi}$
- o Reconstruct $ec{p}_{ au}$, imposing $M_{ au}$
- Use tau decay time to calculate flight distance and get SV

1. First Strategy:

- Assume \vec{p}_{ν} is in the same direction as $\vec{p}_{3\pi}$
- $\circ\,$ Reconstruct $ec{p}_{ au}$, imposing $M_{ au}$
- Use tau decay time to calculate flight distance and get SV
- \circ Estimate B^+ corrected mass

2. <u>Second Strategy:</u>

- Use Machine Learning (NN) to predict SV, using RapidSim dataset
 - Input variables: \vec{p}_{π^+} , \vec{p}_{π^-} , \vec{p}_{π^+} , PV, TV, $m_{3\pi}$
- Estimate B^+ corrected mass, with $\vec{p}_{\nu} \parallel \vec{p}_{3\pi}$ to reconstruct \vec{p}_{τ}

B corrected mass distribution

$$M^B_{corr} = \sqrt{m^2_\tau + p^2_\perp} + p_\perp$$

Green: assuming $\vec{p}_{\nu} \parallel \vec{p}_{3\pi}$ and using true SV Blue: assuming $\vec{p}_{\nu} \parallel \vec{p}_{3\pi}$ and using tau lifetime to calculate SV

Orange: assuming $\vec{p}_{\nu} \parallel \vec{p}_{3\pi}$ and using ML technique to obtain SV

 \hat{f} : tau flight direction

$$\hat{f} = \frac{\overrightarrow{TV} - \overrightarrow{SV}}{\left|\overrightarrow{TV} - \overrightarrow{SV}\right|}$$

Orthogonal basis

$$\hat{x} = \left(-\hat{f}_{y}, \hat{f}_{x}, 0\right)$$
$$\hat{y} = \hat{f} \times \hat{x}$$
$$\hat{z} = \hat{f}$$

 $\vec{p}'_{3\pi}$ $\vec{p}'_{\nu} = \left(-p'_{3\pi x}, -p'_{3\pi y}, p'_{L}\right)$ $p'_{T} = \sqrt{p'_{3\pi x}, + p'_{3\pi y}, p'_{L}}$

In this orthogonal basis:

In this orthogonal basis:

 \hat{f} : tau flight direction $\hat{f} = \frac{\overrightarrow{TV} - \overrightarrow{SV}}{\left|\overrightarrow{TV} - \overrightarrow{SV}\right|}$ Orthogonal basis $\hat{x} = (-\hat{f}_y, \hat{f}_x, 0)$ $\hat{y} = \hat{f} \times \hat{x}$ $\hat{z} = \hat{f}$

$$\vec{p}'_{3\pi}$$
$$\vec{p}'_{\nu} = \left(-p'_{3\pi x}, -p'_{3\pi y}, p'_{L}\right)$$
$$p'_{T} = \sqrt{p'_{3\pi x}, +p'_{3\pi y}, p'_{L}}$$

We constrain the τ mass (M_{τ}) and use energy conservation:

 $M_{\tau}^2 = (E_{3\pi} + E_{\nu})^2 - (\vec{p}_{3\pi}' + \vec{p}_{\nu}')^2$

 \hat{f} : tau flight direction

$$\hat{f} = \frac{\overrightarrow{TV} - \overrightarrow{SV}}{\left|\overrightarrow{TV} - \overrightarrow{SV}\right|}$$

Orthogonal basis $\hat{x} = (-\hat{f}_y, \hat{f}_x, 0)$ $\hat{y} = \hat{f} \times \hat{x}$ $\hat{z} = \hat{f}$ In this orthogonal basis: $\vec{p}'_{3\pi}$ $\vec{p}'_{
u} = \left(-p'_{3\pi \, x}, -p'_{3\pi \, \nu}, p'_L\right)$

$$p_T' = \sqrt{p_{3\pi x}'^2 + p_{3\pi y}'^2}$$

We constrain the τ mass (M_{τ}) and use energy conservation:

$$M_{\tau}^{2} = (E_{3\pi} + E_{\nu})^{2} - (\vec{p}_{3\pi}' + \vec{p}_{\nu}')^{2}$$
$$A = \frac{M_{\tau}^{2} - M_{3\pi}^{2}}{2}$$
$$p_{L}' = \frac{p_{3\pi z}'(A - p_{T}'^{2}) \pm E_{3\pi} \sqrt{A^{2} - p_{T}'^{2} M_{\tau}^{2}}}{E_{3\pi}^{2} - p_{3\pi z}'^{2}}$$

In this orthogonal basis:

Orthogonal basis $\hat{x} = (-\hat{f}_y, \hat{f}_x, 0)$ $\hat{y} = \hat{f} \times \hat{x}$ $\hat{z} = \hat{f}$

$$\vec{p}'_{3\pi}$$
$$\vec{p}'_{\nu} = \left(-p'_{3\pi x}, -p'_{3\pi y}, p'_{L}\right)$$
$$p'_{T} = \sqrt{p'_{3\pi x}, +p'_{3\pi y}, p'_{L}}$$

We constrain the τ mass (M_{τ}) and use energy conservation:

In this orthogonal basis:

Orthogonal basis $\hat{x} = (-\hat{f}_y, \hat{f}_x, 0)$ $\hat{y} = \hat{f} \times \hat{x}$ $\hat{z} = \hat{f}$

$$\vec{p}'_{3\pi}$$
$$\vec{p}'_{\nu} = \left(-p'_{3\pi x}, -p'_{3\pi y}, p'_{L}\right)$$
$$p'_{T} = \sqrt{p'_{3\pi x}, +p'_{3\pi y}, p'_{L}}$$

We constrain the τ mass (M_{τ}) and use energy conservation:

1. Create a grid around TV, select the points that pass the conditions

- 1. Create a grid around TV, select the points that pass the conditions
 - o Using the true variables, we observed \vec{p}_{τ} is roughly aligned with $\vec{p}_{3\pi}$
 - Generate a grid around tau flight direction given by previous strategies

- 1. Create a grid around TV, select the points that pass the conditions
 - o Using the true variables, we observed \vec{p}_{τ} is roughly aligned with $\vec{p}_{3\pi}$
 - Generate a grid around tau flight direction given by previous strategies
- 2. Select events according to the clusters:
 - 50% of the events showed a well separated cluster between TV and PV.

- 1. Create a grid around TV, select the points that pass the conditions
 - o Using the true variables, we observed \vec{p}_{τ} is roughly aligned with $\vec{p}_{3\pi}$
 - o Generate a grid around tau flight direction given by previous strategies
- 2. Select events according to the clusters:
 - 50% of the events showed a well separated cluster between TV and PV.
- 3. Calculate the centroid of this cluster and use it as SV.

- 1. Create a grid around TV, select the points that pass the conditions
 - $_{\rm O}\,$ Using the true variables, we observed \vec{p}_{τ} is roughly aligned with $\vec{p}_{3\pi}$
 - o Generate a grid around tau flight direction given by previous strategies
- 2. Select events according to the clusters:
 - o 50% of the events showed a well separated cluster between TV and PV.
- 3. Calculate the centroid of this cluster and use it as SV.

September 2024

B corrected mass distribution with predicted SV

B corrected mass distribution with predicted SV

B corrected mass distribution with predicted SV

September 2024

Background Study

- Minimum Bias MC 2018 (MU/MD) Sample
 - Simulation that is similar to real data
- 1.5k events passing offline selection
 - In 31% of events, the three pions decayed from the same particle

Process	% observed	
Combinatorial Background	30.5%	
Mother $\rightarrow (X \rightarrow \pi^+\pi^-) \pi$	38.2%	
$B^+ \to (X \to \pi^+\pi^-) \ \pi^+$	7.9%	
$D^+ \rightarrow (X \rightarrow \pi^+ \pi^-) \pi^+$	6.4%	
$X \to \pi^+ \ \pi^- \ \pi^+$	31.3%	BR
$D^+ o \pi^+ \pi^- \pi^+$	6.1%	3.27×10^{-3}
$B^+ \to \pi^+ \pi^- \pi^+$	1.4%	1.52×10^{-5}
$D_s^+ \to \tau^+ \nu$	0.5% ightarrow 8 ev	5.32 %
$B^+ o au^+ u$	$0.3\% \rightarrow 4 \text{ ev}$	1.09×10^{-4}
$B^0 \to \tau^+ \nu X$	$0.1\% \rightarrow 2 \text{ ev}$	1.05 %

Background Study

- Minimum Bias MC 2018 (MU/MD) Sample
 - Simulation that is similar to real data
- 1.5k events passing offline selection
 - In 31% of events, the three pions decayed from the same particle
 - \circ 14 events involving a au lepton

Process	% observed	
Combinatorial Background	30.5%	
Mother $\rightarrow (X \rightarrow \pi^+\pi^-) \pi$	38.2%	
$B^+ \rightarrow (X \rightarrow \pi^+ \pi^-) \pi^+$	7.9%	
$D^+ \rightarrow (X \rightarrow \pi^+ \pi^-) \pi^+$	6.4%	
$X \rightarrow \pi^+ \pi^- \pi^+$	31.3%	BR
$D^+ \rightarrow \pi^+ \pi^- \pi^+$	6.1%	3.27×10^{-3}
$B^+ \to \pi^+ \pi^- \pi^+$	1.4%	1.52×10^{-5}
$D_s^+ \to \tau^+ \nu$	0.5% ightarrow 8 ev	5.32 %
$B^+ o au^+ u$	$0.3\% \rightarrow 4 \text{ ev}$	1.09×10^{-4}
$B^0 \to \tau^+ \nu X$	$0.1\% \rightarrow 2 \text{ ev}$	1.05 %

Background Study

- Minimum Bias MC 2018 (MU/MD) Sample
 - Simulation that is similar to real data
- 1.5k events passing offline selection
 - In 31% of events, the three pions decayed from the same particle

Sign

- o 14 events involving a au lepton
- o Only 4 events of signal

data	Process	% observed	
00	Combinatorial Background	30.5%	
	Mother $\rightarrow (X \rightarrow \pi^+\pi^-) \pi$	38.2%	
s decayed	$B^+ \to (X \to \pi^+\pi^-) \; \pi^+$	7.9%	
	$D^+ \rightarrow (X \rightarrow \pi^+ \pi^-) \pi^+$	6.4%	
	$X \to \pi^+ \pi^- \pi^+$	31.3%	BR
	$D^+ \to \pi^+ \pi^- \pi^+$	6.1%	3.27×10^{-3}
	$B^+ \to \pi^+ \pi^- \pi^+$	1.4%	1.52×10^{-5}
	$D_s^+ \to \tau^+ \nu$	0.5% ightarrow 8 ev	5.32 %
al	$B^+ o au^+ u$	$0.3\% \rightarrow 4 \text{ ev}$	1.09×10^{-4}
	$B^0 \to \tau^+ \nu X$	0.1% ightarrow 2 ev	1.05 %

Background Study: $D_s^+ \rightarrow \tau^+ \nu$

- We generated 100k events of $D_S^+ \rightarrow \tau^+ \nu$ using RapidSim.
- Applied the same strategy: only 20k events passed the selection.

Conclusions

- We propose to measure the branching fraction of the $B^{\pm} \rightarrow \tau^+ \nu$ process.
- We found a strategy that solves the kinematics in our signal.
- There are a lot of processes that will contribute as background
 - Already showed that the strategy allows to separate $D_s^+ \rightarrow \tau^+ \nu$ and the signal.

Next Steps:

- Test the strategy on Full LHCb MC simulation.
- Design a strategy to separate the signal from the background.

Conclusions

- We propose to measure the branching fraction of the $B^{\pm} \rightarrow \tau^+ \nu$ process.
- We found a strategy that solves the kinematics in our signal.
- There are a lot of processes that will contribute as background
 - Already showed that the strategy allows to separate $D_s^+ \rightarrow \tau^+ \nu$ and the signal.

Next Steps:

- Test the strategy on Full LHCb MC simulation.
- Design a strategy to separate the signal from the background.

Thank you for your attention!

Backup slides

September 2024

LHCb Experiment

- Located at the Large Hadron Collider (LHC) at CERN.
- Proton-proton collisions at 13 TeV.
- Single-arm forward spectrometer covering $2 < \eta < 5$.
- Tracking: VELO, a high-precision tracking system (TT, T1, T2, T3);
- Particle Identification: RICH; ECAL, HCAL, Muon stations.

Efficiency of the Stripping line

- The stripping line has an efficiency of $(0.84 \pm 0.42)\%$
- Taking into account the LHCb B^+ production cross section and the decay branching fraction:

Total amount of B^+ in Run 2: $(1.17 \pm 0.09) \times 10^{12}$

Expected amount of signal in Run2: $(1.27 \pm 0.30) \times 10^8$

Expected amount of signal after stripping: $(1.1 \pm 0.6) \times 10^{6}$

Proof: First strategy – neutrino aligned with 3pi

1.2 Considering the case of $p_T = 0$

$$M_{\tau}^{2} = (E_{\pi\pi\pi} + E_{\bar{\nu}})^{2} - |\overrightarrow{p}_{\pi\pi\pi} + \overrightarrow{p}_{\bar{\nu}}|^{2} = E_{\pi\pi\pi}^{2} + E_{\bar{\nu}}^{2} + 2E_{\pi\pi\pi}.E_{\bar{\nu}} - p_{\pi\pi\pi}^{2} - p_{\bar{\nu}}^{2} - 2\overrightarrow{p}_{\pi\pi\pi}.\overrightarrow{p}_{\bar{\nu}} = (11)$$

$$M_{\pi\pi\pi}^{2} + p_{\pi\pi\pi}^{2} + p_{\bar{\nu}}^{2} + 2E_{\pi\pi\pi}.E_{\bar{\nu}} - p_{\pi\pi\pi}^{2} - p_{\bar{\nu}}^{2} - 2\overrightarrow{p}_{\pi\pi\pi}.\overrightarrow{p}_{\bar{\nu}}$$

$$M_{\tau}^{2} = M_{\pi\pi\pi}^{2} + 2.(E_{\pi\pi\pi}.E_{\nu} - \overrightarrow{p}_{\pi\pi\pi}.\overrightarrow{p}_{\bar{\nu}})$$
(12)

where

$$E_{\pi\pi\pi} = \sqrt{M_{\pi\pi\pi}^2 + |\vec{p}'_{\pi\pi\pi}|^2}$$
(13)

and

$$E_{\bar{\nu}} = p_{\bar{\nu}} \tag{14}$$

Taking into account the 3-pion momenta and the neutrino momentum are parallel

$$\overrightarrow{p}_{\pi\pi\pi}.\overrightarrow{p}_{\bar{\nu}} = p_{\pi\pi\pi}.p_{\bar{\nu}} \tag{15}$$

We obtain

$$M_{\tau}^{2} = M_{\pi\pi\pi}^{2} + 2.(E_{\pi\pi\pi}.p_{\bar{\nu}} - p_{\pi\pi\pi}.p_{\bar{\nu}})$$
(16)

As a result

$$p_{\bar{\nu}} = \frac{M_{\tau}^2 - M_{\pi\pi\pi}^2}{2.(E_{\pi\pi\pi} - p_{\pi\pi\pi})}$$
(17)

Machine Learning Model for SV Reconstruction

Algorithm and Model Architecture:

- Neural network for regression
- Architecture:
 - Input layer: Xtrain_scaled Xtrain_scaled features
 - Hidden layers: 2 layers with 64 neurons each, ReLU activation
 - Output layer: 3 neurons, linear activation (for 3 coordinates)

Data Processing:

Input features scaled using StandardScaler

• Training Details:

- Optimizer: Adam
- Loss Function: Mean Squared Error (MSE)
- Validation Split: 20%
- Epochs: 100
- Batch Size: 32
- Performance Evaluation:
 - Model evaluated on test data
- Predictions:
 - Model predicts three coordinates for the secondary vertex

Proof: conditions from strategy

 \hat{f} : flight direction

 $\hat{f} = \frac{\overrightarrow{TV} - \overrightarrow{SV}}{\left|\overrightarrow{TV} - \overrightarrow{SV}\right|}$

Orthogonal basis $\hat{x} = \left(-\hat{f}_y, \hat{f}_x, 0\right)$

$$\begin{aligned} x &= (-f_y, f_x, 0) \\ \hat{y} &= \hat{f} \times \hat{x} \\ \hat{z} &= \hat{f} \end{aligned}$$

In this orthogonal basis:

 $\vec{p}'_{3\pi}$ $\vec{p}'_{\nu} = (-p'_{3\pi x}, -p'_{3\pi y}, p'_{L})$ $p'_{T} = \sqrt{p'_{3\pi x}, + p'_{3\pi y}, p'_{L}}$

We impose the τ mass:

$$\begin{split} M_{\tau}^{2} &= \left(E_{3\pi} + E_{\nu}\right)^{2} - \left(p_{3\pi}^{2} + p_{\nu}^{2}\right)^{2} \\ M_{\tau}^{2} &= E_{3\pi}^{2} + E_{\nu}^{2} + 2E_{3\pi}E_{\nu} - p_{3\pi}^{'2} - p_{\nu}^{2} - 2\vec{p}_{3\pi}^{'} \cdot \vec{p}_{\nu} \\ M_{\tau}^{2} &= M_{3\pi}^{2} + p_{3\pi}^{'2} + M_{\nu}^{2} + p_{\nu}^{2} + 2E_{3\pi}E_{\nu} - p_{3\pi}^{'2} - p_{\nu}^{2} - 2\vec{p}_{3\pi}^{'} \cdot \vec{p}_{\nu} \\ M_{\tau}^{2} &= M_{3\pi}^{2} + 2E_{3\pi}E_{\nu} - 2\vec{p}_{3\pi}^{'} \cdot \vec{p}_{\nu} \\ M_{\tau}^{2} &= M_{3\pi}^{2} + 2\left(E_{3\pi}E_{\nu} - p_{3\pi}^{'} \cdot \vec{p}_{\nu}\right) \end{split}$$
(1)

using:

$$p_{3\pi}^{'} = \left(p_{3\pi x} \hat{x}, p_{3\pi y} \hat{y}, p_{3\pi z} \hat{f} \right) p_{\nu}^{'} = \left(-p_{3\pi x} \hat{x}, -p_{3\pi y} \hat{y}, p_L \right)$$
(2)

we can rewrite this as:

$$\vec{p}'_{3i} \cdot p'_{y} = -p^{2}_{3+2} - p^{2}_{3\pi}{}^{2} + p'_{3\pi2}p_{2} = -\not{p}^{2}_{t} + p'_{3in} = p_{2}$$

$$\frac{M^{2}_{\tau} - M^{2}_{3\pi}}{2} = E_{3\pi}E_{\nu} + P^{2}_{T} - P^{'}_{3\pi z}P_{L}$$
(3)

Assuming $M_{\nu} = 0$ $(E_{\nu} = p_{\nu})$, we define A as:

$$A = \frac{M_{\tau}^2 - M_{3\pi}^2}{2}$$
(4)

with this we have:

$$A = E_{3\pi} \sqrt{p_T^2 + p_L^2} + p_T^2 + p_{3\pi z} p_L \tag{5}$$

Definying now B, C, D and x as:

$$B = p_T$$

$$C = p_{3\pi z}$$

$$D = E_{3\pi}$$

$$x = p_L$$
(6)

September 2024

Proof: conditions from strategy

We impose the τ mass:

$$\begin{split} M_{\tau}^{2} &= \left(E_{3\pi} + E_{\nu}\right)^{2} - \left(p_{3\pi}^{2} + p_{\nu}^{2}\right)^{2} \\ M_{\tau}^{2} &= E_{3\pi}^{2} + E_{\nu}^{2} + 2E_{3\pi}E_{\nu} - p_{3\pi}^{'2} - p_{\nu}^{2} - 2\vec{p}_{3\pi}^{'} \cdot \vec{p}_{\nu} \\ M_{\tau}^{2} &= M_{3\pi}^{2} + p_{3\pi}^{'2} + M_{\nu}^{2} + p_{\nu}^{2} + 2E_{3\pi}E_{\nu} - p_{3\pi}^{'2} - p_{\nu}^{2} - 2\vec{p}_{3\pi}^{'} \cdot \vec{p}_{\nu} \\ M_{\tau}^{2} &= M_{3\pi}^{2} + 2E_{3\pi}E_{\nu} - 2\vec{p}_{3\pi}^{'} \cdot \vec{p}_{\nu} \\ M_{\tau}^{2} &= M_{3\pi}^{2} + 2\left(E_{3\pi}E_{\nu} - p_{3\pi}^{'} \cdot \vec{p}_{\nu}\right) \end{split}$$
(1)

using:

$$p_{3\pi}^{'} = \left(p_{3\pi x} \hat{x}, p_{3\pi y} \hat{y}, p_{3\pi z} \hat{f} \right) p_{\nu}^{'} = \left(-p_{3\pi x} \hat{x}, -p_{3\pi y} \hat{y}, p_L \right)$$
(2)

we can rewrite this as:

$$\vec{p}_{3i} \cdot p_{y}' = -p_{3+2}^{2} - p_{3\pi}^{2}^{2} + p_{3\pi2}' p_{2} = -\not p_{t}^{2} + p_{3in}' = p_{2}$$

$$\frac{M_{\tau}^{2} - M_{3\pi}^{2}}{2} = E_{3\pi} E_{\nu} + P_{T}^{2} - P_{3\pi z}' P_{L}$$
(3)

Assuming $M_{\nu} = 0$ $(E_{\nu} = p_{\nu})$, we define A as:

$$A = \frac{M_{\tau}^2 - M_{3\pi}^2}{2} \tag{4}$$

with this we have:

$$A = E_{3\pi} \sqrt{p_T^2 + p_L^2} + p_T^2 + p_{3\pi z} p_L \tag{5}$$

Definying now B, C, D and x as:

$$B = p_T$$

$$C = p_{3\pi z}$$

$$D = E_{3\pi}$$

$$x = p_L$$
(6)

$$A = D\sqrt{B^{2} + x^{2} + B^{2} - Cx}$$

$$(A - B^{2} + Cx)^{2} = (D\sqrt{B^{2} + x^{2}})^{2}$$

$$A^{2} + B^{4} + C^{4}x^{2} - 2AB^{2} + 2ACx - 2B^{2}Cx = D^{2}(B^{2} + x^{2})$$
(7)

After some manipulation we arrive at an expression for x, i.e. p_L :

$$p_L = \frac{p_{3\pi z} \left(A - p_T^2\right) \pm E_{3\pi} \sqrt{A^2 - p_T^2 M_\tau^2}}{E_{3\pi}^2 - p_{3\pi z}^2} \tag{8}$$

Allowing us to arrive at the conditions:

$$p_T^2 < \frac{M_\tau^2 - M_{3\pi}^2}{2M_\tau}$$
(9)

and for the other vertex:

$$p_T^2 < \frac{M_B^2 - M_\tau^2}{2M_B} \tag{10}$$

September 2024

Distance SV true – SV predicted

Background Study: $D_s^+ \rightarrow \tau^+ \nu$

Difference between SV TRUE and SV predicted by the strategy

Full Simulation

September 2024

SPS Annual Meeting - Rita Silva

Preliminary Full Simulation

