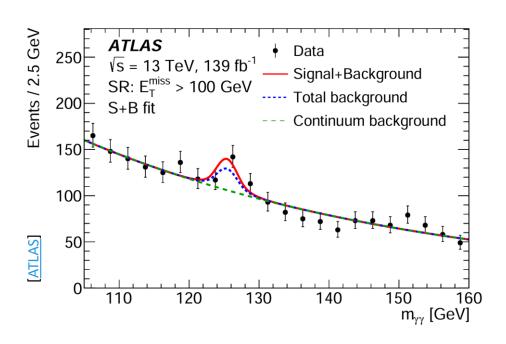


Real Higgs triplet at the LHC


Guglielmo Coloretti
University of Zurich and Paul Scherrer Institut
03.09.2024

Hints for New Physics @152 GeV

 No significant excess in inclusive γγ searches

Interesting excesses in $\gamma\gamma + X$ (additional particles in the signal regions)

Associated production (AP) mechanism

≈152 GeV mostly produced in association (AP)

≈152 GeV mostly produced in association (AP)

No room for NP at \approx 152 GeV in ZZ but in WW

≈152 GeV mostly produced in association (AP)

No room for NP at ≈ 152 GeV in ZZ but in WW

W mass (1.4/3.5 σ over SM w/o CDFII)

≈152 GeV mostly produced in association (AP)

No room for NP at \approx 152 GeV in ZZ but in WW

W mass (1.4/3.5 σ over SM w/o CDFII)

		<u> </u>	
	$SU(2)_L$	$U(1)_Y$	
Δ	3	0	

≈152 GeV mostly produced in association (AP)

No room for NP at \approx 152 GeV in ZZ but in WW

W mass (1.4/3.5 σ over SM w/o CDFII)

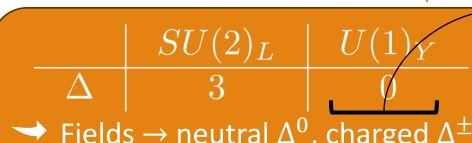
No direct coupling to SM fermions:

- Gluon fusion $\propto \alpha \ll 1$
- Flavour effects $\propto \frac{v_{\Delta}}{v_{SM}} \ll 1$

≈152 GeV mostly produced in association (AP)

No room for NP at \approx 152 GeV in ZZ but in WW

W mass (1.4/3.5 σ over SM w/o CDFII)


No direct coupling to SM fermions:

- Gluon fusion $\propto \alpha \ll 1$
- Flavour effects $\propto \frac{v_{\Delta}}{v_{SM}} \ll 1$

≈152 GeV mostly produced in association (AP)

No room for NP at ≈152 GeV in ZZ but in WW

W mass $(1.4/3.5\sigma \text{ over SM})$ w/o CDFII)

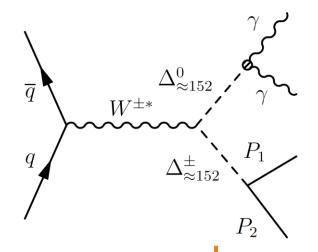
- \rightarrow Fields \rightarrow neutral Δ^0 , charged Δ^{\pm}
- \rightarrow Parameters $\rightarrow \langle \Delta \rangle = v_{\Delta}, \ \alpha_{\Delta}$

No direct coupling to SM fermions:

- Gluon fusion $\propto \alpha \ll 1$
- Flavour effects $\propto \frac{v_{\Delta}}{v_{SM}} \ll 1$

Vacuum expectation value of the triplet Δ

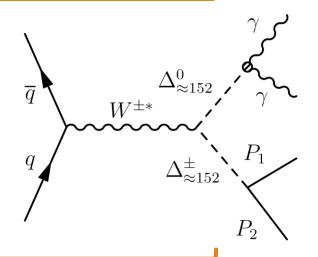
Mixing angle between SM Higgs h – neutral component of the triplet Δ^0


≈152 GeV mostly produced in association (AP)

No room for NP at \approx 152 GeV in ZZ but in WW

W mass (1.4/3.5 σ over SM w/o CDFII)

- \rightarrow Fields \rightarrow neutral Δ^0 , charged Δ^{\pm}
- ightharpoonup Parameters ightarrow $\langle \Delta
 angle = v_\Delta$, α_Δ


Produced in AP via Drell-Yan (DY)

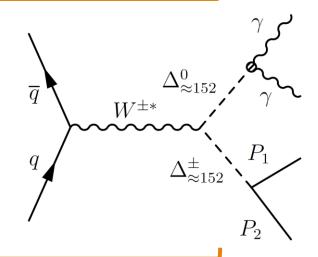
≈152 GeV mostly produced in association (AP)

No room for NP at \approx 152 GeV in ZZ but in WW

W mass (1.4/3.5 σ over SM w/o CDFII)

- \rightarrow Fields \rightarrow neutral Δ^0 , charged Δ^{\pm}
- ightharpoonup Parameters $ightarrow \langle \Delta \rangle = v_{\Delta}$, α_{Δ}

Produced in AP via Drell-Yan (DY)

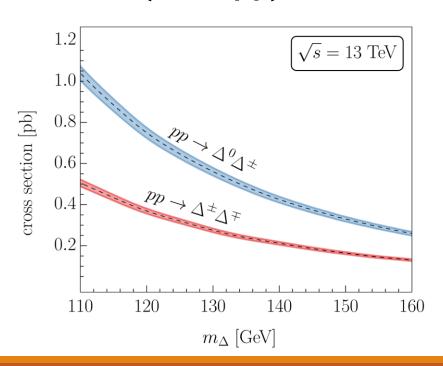

 $\Delta^0 WW$ but no $\Delta^0 ZZ$ (tree level, $\alpha_\Delta=0$)

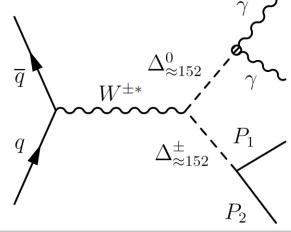
≈152 GeV mostly produced in association (AP)

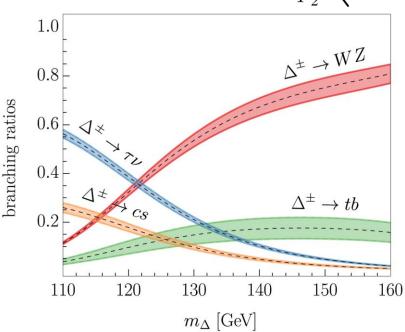
No room for NP at \approx 152 GeV in ZZ but in WW

W mass (1.4/3.5 σ over SM w/o CDFII)

- \rightarrow Fields \rightarrow neutral Δ^0 , charged Δ^{\pm}
- ightharpoonup Parameters ightarrow $\langle \Delta
 angle = v_\Delta$, α_Δ

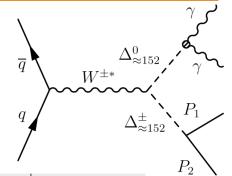

Produced in AP via Drell-Yan (DY)


 $\Delta^0 WW$ but no $\Delta^0 ZZ$ (tree level, $\alpha_\Delta=0$)


 $v_{\Delta} pprox 2.3/3.4 \text{ GeV}$ $(m_{\Lambda^0} pprox m_{\Lambda^\pm})$ All relevant parameters are fixed by the model except

$$ightarrow m_{\Delta^0,\,\Delta^\pm}$$

$$\rightarrow$$
 Br($\Delta^0 \rightarrow \gamma \gamma$)

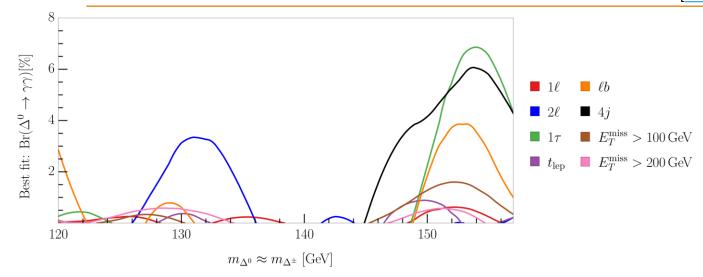


ATLAS: $H \rightarrow \gamma \gamma + X$

→ ATLAS search for AP with full Run2 data

 \rightarrow SM $H \rightarrow \gamma \gamma + X$ (m_{$\gamma \gamma$} = 105-160 GeV)

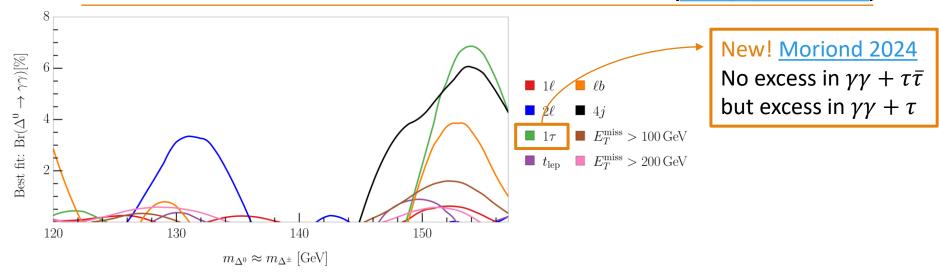
 \rightarrow Multiple categories ($X = l, j, j_b, E_T^{miss}$...)


ATLAS

Target	Signal region	Detector level	Correlations
High jet activity	4j	$n_j \ge 4$	-
Тор	$\ell b \ t_{ m lep}$	$n_{\ell} \ge 1, n_{b-\text{jet}} \ge 1$ $n_{\ell=e,\mu} = 1, n_{\text{jet}} = n_{b-\text{jet}} = 1$	-
Lepton	$\frac{2\ell}{1\ell}$	$ee, \mu\mu \text{ or } e\mu$ $n_{\ell} = 1, n_{t_{\text{had}}} = 0, n_{b-\text{jet}} = 0$	< 26%
Tau	$1 au_{ m had}$	$n_{\ell} = 0, n_{\tau_{\text{had}}} = 1, n_{b-\text{jet}} = 0$	_
$E_{ m T}^{ m miss}$	$\begin{array}{c} E_{\mathrm{T}}^{\mathrm{miss}} > 100 \; \mathrm{GeV} \\ E_{\mathrm{T}}^{\mathrm{miss}} > 200 \; \mathrm{GeV} \end{array}$	$E_{\mathrm{T}}^{\mathrm{miss}} > 100 \; \mathrm{GeV}$ $E_{\mathrm{T}}^{\mathrm{miss}} > 200 \; \mathrm{GeV}$	29%

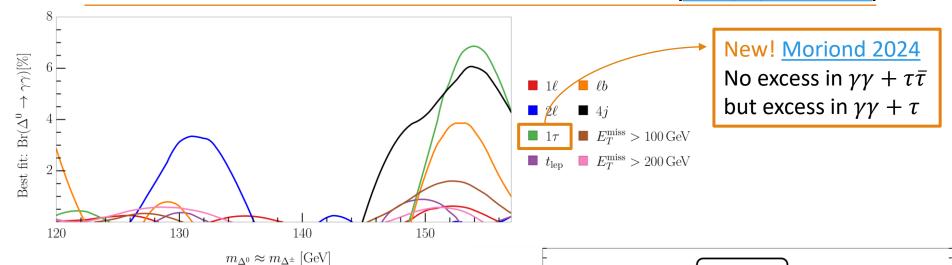
Reduced SM background and enhanced NP sensitivity

Results: $\Delta^0 \rightarrow \gamma \gamma + X$

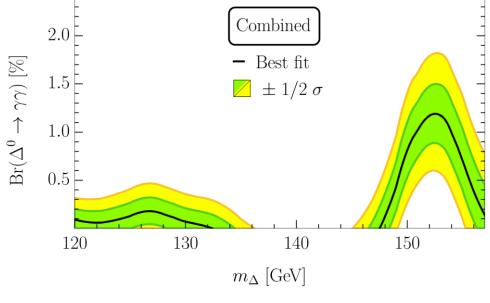

S. Banik, GC, A. Crivellin et al.

- → 22 channels analyzed by ATLAS
- → 8 relevant for a real triplet

Results: $\Delta^0 \rightarrow \gamma \gamma + X$


S. Banik, GC, A. Crivellin et al.

- 22 channels analyzed by ATLAS
- → 8 relevant for a real triplet


Results: $\Delta^0 \rightarrow \gamma \gamma + X$

[S. Banik, GC, A. Crivellin et al.]

- 22 channels analyzed by ATLAS
- 8 relevant for a real triplet

$$\text{Br}\big(\Delta^0\to\gamma\gamma\big)\approx1\%$$
 preferred over SM by $\approx4\sigma$

Comparison

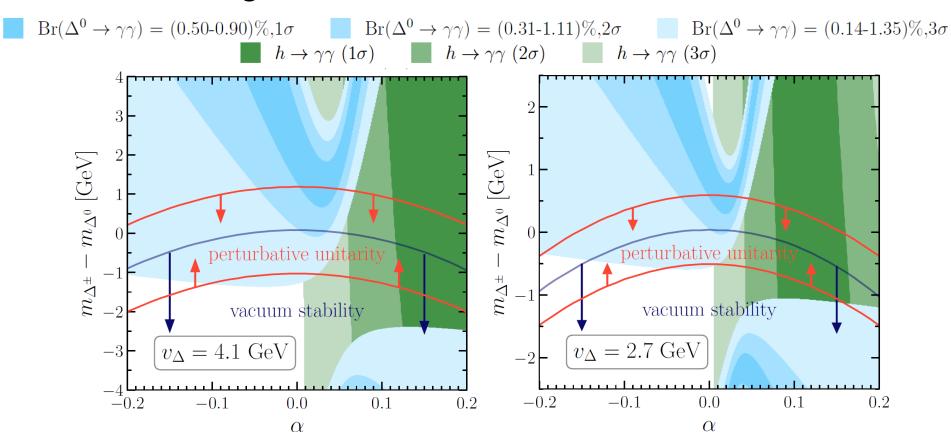
2HDM type-I

- Minimal set of parame
- Several parameters and fields as input
- Included in multiple new physics model
- Best fit for the $\gamma\gamma + X$ excesses at 152 GeV

 Minimal set of parameters and fields

 Δ SM

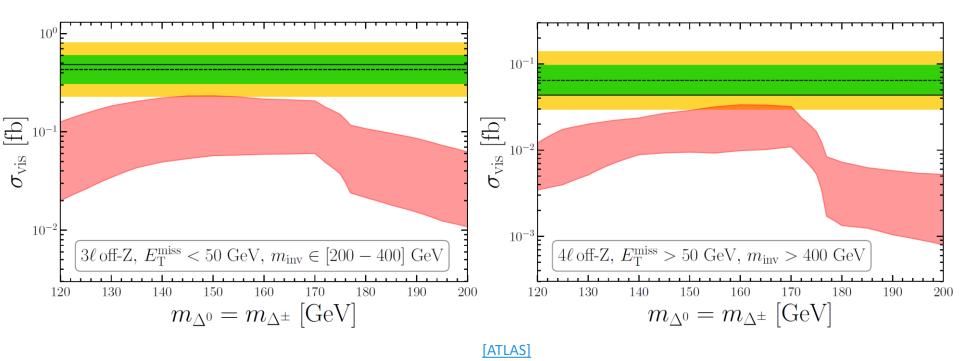
- Most degrees of freedom fixed by the model
- $H^{\pm} \rightarrow W^{\pm}Z$ affects goodness of the 152 GeV excesses fit


Common requirements is a neutral scalar with a mass of 152 GeV mostly produced via Drell-Yan

Conclusions and outlook

- 1. Interesting hints for NP at 152 GeV in associated production (resonant di-photon searches, multi-lepton anomalies)
- 2. Real Higgs triplet explains such excesses and is preferred over SM by $\approx 4\sigma$
- 3. Run3 data and HL-LHC will scrutinize such NP scenario
- 4. Δ^{\pm} suitable candidate for future e^+e^- colliders
- 5. A real triplet is enough for a strong first order EW phase transition [Bandyopadhyay et al.]

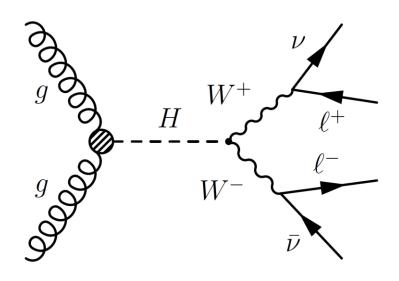
BACK UP SLIDES


- Vacuum stability and perturbative unitarity in slight tension with other phenomenological observables
- Pointing to additional fields at or above the EW scale

3 and 4 – leptons bounds

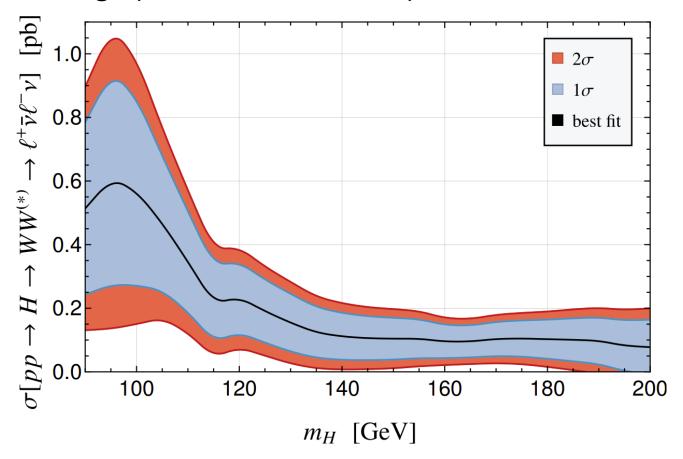
[In prepation...]

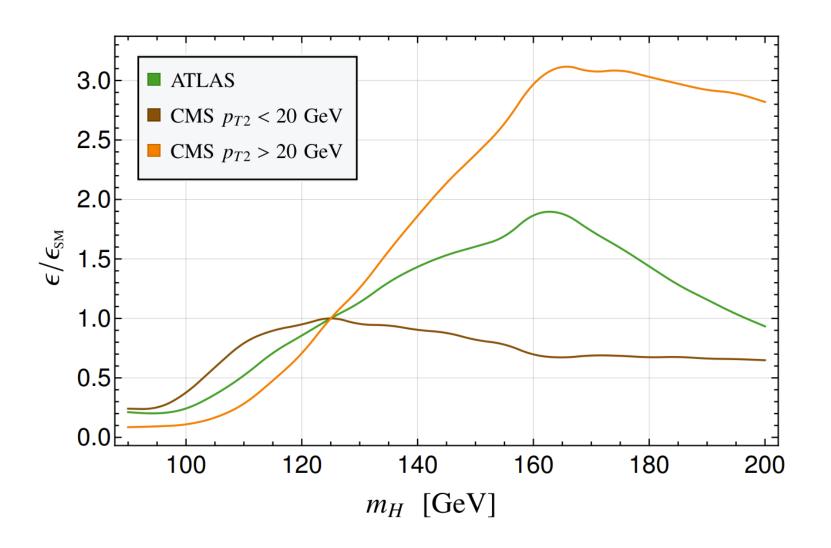
→ Multi-lepton searches with 3 and 4 leptons as final states are not excluding a real Higgs triplet at low masses



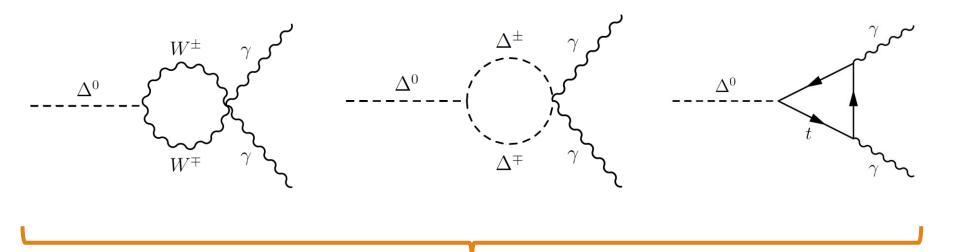
WW analysis

- ightharpoonup No dedicated BSM search for gg
 ightharpoonup H
 ightharpoonup WW with full luminosity and including 90 GeV for the range of m_H
- ightharpoonup $m \underline{CMS}$ and $m \underline{ATLAS}$ analyses available for m SM m Higgs (135 $m fb^{-1}$)

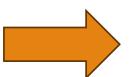

- Re-casting analyses to search for new scalars
- Simulation with MadGraph5_aMC@NLO (Pythia8, Delphes)


Leptonic decays → jet veto

WW results


Observed limit is weaker than expected over the whole mass range (room for BSM $\geq 2\sigma$)

WW simulation efficiency [GC, A. Crivellin et al.]



Fit: $\Delta^0 \to \gamma \gamma$

$$f(m_{\Delta^0}$$
 , α , $m_{\Delta^{\pm}} - m_{\Delta^0}$, v_{Δ} ; ...)

For the fit, all parameters subsumed into single relevant phenomenological one

$$Br[\Delta^0 \to \gamma \gamma]$$

(although explicit formulae used to compute, for instance, bounds on SM $h \rightarrow \gamma \gamma$)