Pile-up for physics: building a novel hadronic physics dataset

Antti Pirttikoski, Carlos Moreno Martínez, Mário Cardoso, Steven Schramm, Vilius Čepaitis

Swiss Physics Society Annual Meeting ETH Zürich - 12/Sep/2024

This presentation is part of a project that has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No. 948254)

The LHC and ATLAS

- The Large Hadron Collider: unprecedented energy and luminosity
 - Up to 30 million *pp* collisions per second

- The Large Hadron Collider: unprecedented energy and luminosity
 - Up to 30 million *pp* collisions per second
 - Bunches of 10^{11} protons, with ~34 interactions per crossing

- The Large Hadron Collider: unprecedented energy and luminosity
 - Up to 30 million *pp* collisions per second
 - Bunches of 10^{11} protons, with ~34 interactions per crossing

- Wide range of studies in ATLAS
 - General approach: record entire detector readout for offline reconstruction
 - Average size per collision: 1 MB \rightarrow 30 TB/s!

The LHC and ATLAS

- The Large Hadron Collider: unprecedented energy and luminosity
 - Up to 30 million *pp* collisions per second
 - Bunches of 10¹¹ protons, with ~34 interactions per crossing

TI2

- Wide range of studies in ATLAS
 - General approach: record entire detector readout for offline reconstruction
 - Average size per collision: 1 MB \rightarrow 30 TB/s!
 - Filter out *uninteresting* collisions: ATLAS Trigger
 - Add a kinematic selection to record events

Bunch crossing (BC) BC rate: ~30 MHz

Num. inelastic interactions

The trigger selections in ATLAS

- The selections applied at the trigger depend on the process targeted
 - Electroweak processes are rare
 - Single lepton threshold ~30 GeV

- The selections applied at the trigger depend on the process targeted
 - Electroweak processes are rare
 - Single lepton threshold ~30 GeV
 - Hadronic processes are very common
 - Typical signature: jets
 - Collimated sprays of hadrons from quarks and gluons
 - Single jet threshold ~400 GeV

- The selections applied at the trigger depend on the process targeted
 - Electroweak processes are rare
 - Single lepton threshold ~30 GeV
 - Hadronic processes are very common
 - Typical signature: jets
 - Collimated sprays of hadrons from quarks and gluons
 - Single jet threshold ~400 GeV
- One possibility: prescaling
 - Record only a fraction of the data with looser selection

- The selections applied at the trigger depend on the process targeted
 - Electroweak processes are rare
 - Single lepton threshold ~30 GeV
 - Hadronic processes are very common
 - Typical signature: jets
 - Collimated sprays of hadrons from quarks and gluons
 - Single jet threshold ~400 GeV
- One possibility: prescaling
 - Record only a fraction of the data with looser selection

- The selection the process ta
 - **Electrowea** \bullet
 - Single lep

[fb⁻¹]

Effective integrated luminosity

- Hadronic p
 - Typical si
 - Collima
 - Single jet
- One possibilit
 - Record only selection

10² **ATLAS** √s = 13 TeV, Data 2015-2018 10 **10**⁻¹ **10**⁻² 10⁻³ 10^{-4} 10^{-5} 20 30 40 50 60 70

The trigger selections in ATLAS

- The selections applied at the trigger depend on the process targeted the process targeted
 - √s = 13 TeV, Data 2015-2018 Electroweak groceste are rare
 - Single lepton threshold ~30 GeV
 - Hadronic progesses are very common
 - Typical sign&ure:1jets
 - Collimate sprays of
 - Single jet the
- - the data with looser Record only a fract selection
 - **10**⁻⁵ 40 50 60 70 20 30

C. Moreno Martínez

101

C. Moreno Martínez

• Interesting collision! \rightarrow Record *full* detector readout

- Interesting collision! \rightarrow Record *full* detector readout
- Real <u>recorded</u> collisions are more complex
 - Pile-up interactions fill the detector with low-energy hadronic activity...

- Interesting collision! \rightarrow Record *full* detector readout
- Real <u>recorded</u> collisions are more complex \bullet
 - Pile-up interactions fill the detector with low-energy hadronic activity...
 - Pile-up interactions fill the detector with low-energy hadronic activity!

Using pile-up collisions for physics

- In each Bunch Crossing (BC) there are multiple *independent* hard scatterings
- Once the data is recorded, we reconstruct each pp interaction in a BC as Primary Vertices (PVs)
 - Standard ATLAS approach: find the PV that fires the trigger, suppress everything else
 - Alternative approach: find the PV that fires the trigger, remove it and use everything else for physics
- All interactions in a given BC are uncorrelated: pile-up interactions are <u>not biased by the trigger selection</u>
 - Access to low-momentum jets for physics studies! See A. Pirttikoski's talk for more!

Using pile-up collisions for physics

In each Bunch \bullet [fb⁻¹] 10² • Once the data **ATLAS** Effective integrated luminosity Standard A √s = 13 TeV, Data 2015-2018 10 Single-jet triggers, 99% trigger efficiency Alternative All interaction Pile-up, single-e/ μ triggered, 1.33 pb⁻¹ ➡ Access to 10^{-1} **10**⁻² 10⁻³ 10⁻⁴ **10**⁻⁵ 40 50 60 70 20 30

C. Moreno Martínez

By-vertex jet reconstruction

- Problem: reconstruct jets originating from different collisions
- Solution: vertex-aware (Particle Flow) jet reconstruction algorithm
 - For each PV, reconstruct jets with the associated charged activity + all neutral contributions
 - Needs careful treatment of "origin-less" neutral component See M. Cardoso's talk

C. Moreno Martínez

Finding the triggering process

- Next step: identify and remove the Triggering Primary Vertex (TPV) and all objects associated to it
- TPV identification depends on the signature triggered on
 - We have to be able to find a single responsible physics object for firing the trigger
 - It must be possible to match the triggering object to a PV charged objects
- Example of bad signature: total energy deposited in the calorimeter \bullet
- Perfect signature: single-electron and single-muon triggers!

C. Moreno Martínez

Are pile-up collisions really independent?

- TPV and pile-up PVs should be independent
 - TPV-removal process is essential for trigger-unbiased data!
- **Dataset validation:** compare the pile-up data to zero bias data lacksquare
 - Study single-electron and single-muon triggered-data independently
 - Good agreement with reference
 - Excellent agreement between them
- Within stat uncertainties, the pile-up data is trigger unbiased!
 - Access jet p_T down to 20 GeV (vs 400 GeV trigger threshold!)

C. Moreno Martínez

Are pile-up collisions really independent?

- TPV and pile-up PVs should be independent
 - TPV-removal process is essential for trigger-unbiased data!
- **Dataset validation:** compare the pile-up data to zero bias data lacksquare
 - Study single-electron and single-muon triggered-data independently
 - Good agreement with reference
 - Excellent agreement between them
- <u>Within stat uncertainties, the pile-up data is trigger unbiased</u>
 - Access jet p_T down to 20 GeV (vs 400 GeV trigger threshold!)

So... what now?

C. Moreno Martínez

Summary and outlook

- \bullet
- Two key ingredients to build the pile-up dataset \bullet
 - Improved standard ATLAS jet reconstruction to be vertex-dependent
 - Finding and removing the process responsible for firing the trigger
- This was an introductory talk to discuss the technique, more on the \bullet
 - Challenges arising from the pileup dataset creation/usage: talk by M. Cardoso
 - Physics applications of the pile-up data: talk by A. Pirttikoski

Developed a novel approach to access low-energy hadronic data beyond trigger-imposed limitations

Thanks for your attention!

C. Moreno Martínez

