

Search for Hidden Particles at the SPS ECN3 high-intensity beam facility

ANNUAL MEETING OF THE SWISS PHYSICAL SOCIETY

ETH ZÜRICH, 9-13 September 2024 | Switzerland

Martina Ferrillo, Universität Zürich (UZH) martina.ferrillo@cern.ch

Many experimental evidences for physics **Beyond** the **Standard Model**

- Neutrino masses •
- Baryon/Anti-baryon asymmetry of the Universe •
- Dark Matter and Dark Energy •

Hidden Sector Portals: New Physics might hide in long-lived Feebly Interacting Particles (FIPs)

Martina Ferrillo, UZH

SPS Annual Meeting 2024,

PHYSICS MOTIVATION

Main research strategies to look for FIPs:

1. **High-Energy** frontier (LHC, FCC)

heavy particles high energy events

2. High-Intensity frontier

light(er) particles rare events

History of BDF/SHiP at CERN:

- **2013**: Letter of Intent [arXiv:1310.1762]
- 2015: Technical Proposal, Physics Proposal [arXiv:1504.04956, arXiv:1504.04855]
- 2019: Comprehensive Design Study Report [CERN-SPSC-2019-049]
- **2023**: BDF/SHiP at the *ECN3* high-intensity beam facility [CERN-SPSC-2023-033]*
 - → From ECN4 to ECN3 cavern, update downstream detector dimension
- **Approval by CERN RB in March 2024** \Rightarrow moving onto the Technical Design Report phase •

Martina Ferrillo, UZH

THE SHIP EXPERIMENT

SHil

CERN-SPSC-2015-017 SPSC-P-350-ADD-1

Search for Hidden Particles

SPS Annual Meeting 2024, 11/09/2024

SHIP AT A DEDICATED BEAM DUMP FACILITY

- **SPS beam**: 400 GeV protons with intensity 4×10^{19} p.o.t./yr •
- *General-purpose* beam dump facility (BDF) •
- **15 years**-long **physics** program: 6×10^{20} p.o.t. •

SPS Annual Meeting 2024, 11/09/2024

BEAM DUMP OPTIMISATION

MC SIMULATION, TEMPERATURE MAP DURING PULSE

Ti-Zr-Mo alloy + W blocks, optimised to enhance production of charm and beauty mesons

- **Thick target**, 12λ : using full beam primary and secondary interactions
- **High A&Z**: maximising production cross-section
- 5m-long magnetised hadron absorber: stopping pions/Kaons before decay
- Cast-iron and concrete shielding, water-cooled and vacuum confined •

Martina Ferrillo, UZH

CERN-SPSC-2023-033

ANNUAL YIELDS WITHIN ACCEPTANCE

- $\sim 2 \times 10^{17}$ charmed hadrons (> 10x HL-LHC)
- ~ 1.4×10^{13} beauty hadrons
- ~ $2 \times 10^{15} \nu_{\tau} / \bar{\nu}_{\tau}$

SPS Annual Meeting 2024, 11/09/2024

- Concept: alternate-polarity design to deflect μ^+/μ^- away • from the decay volume
- Hybrid magnet (SC/NC) to accommodate ECN3 constraints, while preserving performance
- Machine Learning-based optimisation efforts for the TDR •

Martina Ferrillo, UZH

MUON SHIELD OPTIMISATION

Light Dark Matter and Neutrino detector hybrid design similar to SND@LHC: target, vertex detector, calorimeter

- Target (ECC): nuclear emulsion films interleaved with W plates •
- Target Trackers: electronic detectors (SciFi) •
- **Muon spectrometer** downstream for muon charge/momentum measurement •

SCATTERING AND NEUTRINO DETECTOR

HIDDEN SECTOR DECAY SPECTROMETER

- Low pressure Air (or Helium) based **decay volume** to minimise μ, ν interactions
- Background taggers: **SBT** (decay volume) and **UBT** (upstream of HSDS)
- **Spectrometer magnet** + straw-**tracker** to reconstruct *decay vertices* and the *impact parameter* at the proton target •
- SiPM + Scintillators **timing detector** to reject *combinational* background
- **PID system** for e/γ shower reconstruction and μ /hadron separation (Calorimeters + Muon ID system) •

Designed to achieve **zero background in FIPs decay search**, further optimisation ongoing

SCATTERING

Micro-metric resolution for a rich Light Dark Matter and **neutrino** physics program

SHIP EXPERIMENTAL TECHNIQUES

Model-independent setup for a broad FIPs search

FIPS SIGNAL MODES

- **Hidden Sector**: possible interaction with the SM sector via *portals*
- Beyond portals: SUSY

Physics model	Final state
SUSY neutralino	$\ell^{\pm}\pi^{\mp},\ \ell^{\pm}K^{\mp},\ \ell^{\pm} ho^{\mp},\ell^{+}\ell^{-} u$
Dark photons	$\ell^+\ell^-, 2\pi, 3\pi, 4\pi, KK, qar q, Dar D$
Dark scalars	$\ell\ell,\pi\pi,KK,qar{q},Dar{D},GG$
ALP (fermion coupling)	$\ell^+\ell^-, 3\pi, \eta\pi\pi, qar q$
ALP (gluon coupling)	$\pi\pi\gamma, 3\pi, \eta\pi\pi, \gamma\gamma$
HNL	$\ell^+\ell^{\prime-} u,\pi l, ho l,\pi^0 u,qar q^\prime l$
Axino	$\ell^+\ell^- u$
ALP (photon coupling)	$\gamma\gamma$
SUSY sgoldstino	$\gamma\gamma,\ell^+\ell^-,2\pi,2K$
	Physics model SUSY neutralino Dark photons Dark scalars ALP (fermion coupling) ALP (gluon coupling) HNL Axino ALP (photon coupling) SUSY sgoldstino

CERN-SPSC-2023-033 arXiv:1504.04855

Capability not only to **probe** the **existence**, but also the properties of the observed decays in case of discovery \Rightarrow Model distinction

HIDDEN SECTOR PHYSICS

BACKGROUND REJECTION

selection + timing + veto system (UBT&SBT)

NEUTF

- **Unprecedented** yield of $\nu_{\tau} / \bar{\nu}_{\tau}$ at SHiP from $D_s \to \tau \nu_{\tau}$ •
 - First measurement of structure functions F₄ and F₅ in $\sigma_{\nu-C}$ with ν_{τ} [NP B 84 (1975)]; ν_{τ} anomalous magnetic moment, ...
- SND can identify the flavour of all neutrinos •

- LFU in neutrino interaction; neutrino xsec measurement up to

NEUTRINO AND LIGHT DARK MATTER PHYSICS

RINOS	Nr of Neutrino Events for 6×10^{20} p.o.t., Including ϵ Reco			
CCDIS accessible only	Decay channel	ν_{τ}	$\overline{\nu_{\tau}}$	
	$\begin{array}{c} \tau \to \mu \\ \tau \to h \end{array}$	$4 \times 10^{\circ}$ $27 \times$	$3 \times 10^{\circ}$	
	$\tau \rightarrow 3h$	11 ×	(10^3)	
	$\tau \to e$	8 ×	10^{3}	
o 100 GeV	total	$53 \times$	$< 10^{3}$	

NEUT

- **Unprecedented** yield of $\nu_{\tau} / \bar{\nu}_{\tau}$ at SHiP from $D_s \to \tau \nu_{\tau}$ •
 - First measurement of structure functions F₄ and F₅ in $\sigma_{\nu-0}$ with ν_{τ} [NP B 84 (1975)]; ν_{τ} anomalous magnetic moment, ...
- SND can identify the flavour of all neutrinos

- LFU in neutrino interaction; neutrino xsec measurement up to

- Direct search for elastic LDM scattering
 - Experimental signature given by a **shower** from the scattered electron
 - Background dominated by elastic neutrino-electron elastic scattering

NEUTRINO AND LIGHT DARK MATTER PHYSICS

RINOS	Nr of Neutrino Events for 6×10^{20} p.o.t., Including ϵ Reco			
CCDIS accessible only	$\begin{array}{c} \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$ \begin{array}{r} \nu_{\tau} \\ 4 \times 10^{3} \\ 27 \times \\ 11 \times \\ 8 \times \end{array} $	$ \overline{\overline{\nu}_{\tau}} \\ 3 \times 10^{3} \\ 4 10^{3} \\ 4 10^{3} \\ 10^{3} $	
o 100 GeV	total	$53 \times$	(10^3)	

LIGHT DARK MATTER (sub-GeV)

NEUTRINO BACKGROUND IN LDM-ELECTRON SCATTERING SEARCH FOR 2×10^{20} p.o.t.

	$ u_e$	$ar{ u}_e$	$ u_{\mu}$	$ar{ u}_{\mu}$	
Elastic scattering on e^-	52	27	64	42	
Quasi - elastic scattering	-	9			
Resonant scattering	-	-			
Deep inelastic scattering	-	-			
Total	52	36	64	42	
		<u>JHEP 02 (202</u>			

EXPERIMENT ROADMAP

- Early 2024: SPSC recommendation and CERN RB decision for the BDF/SHiP proposal at ECN3 •
- **Technical Design Report (TDR) phase:**
 - Defining the strategy for the muon shield and consequent detectors configuration
- During LS3:
 - Decommissioning and detector production/installation; dedicated test-beams
- **2030-2031:** detector **commissioning** and **first data** •

CERN-SPSC-2023-033

TDR SUBMISSION

SHIP PHYSICS PERFORMANCE

- SHiP sensitivity to FIPs in *decay* and *scattering* mode is order of magnitudes better than existing limits
- 90% CL assuming 6 × 10²⁰ p.o.t., Fairship + SensCalc [PRD 108 (2023) 7, 075028]
- **Strength:** model discrimination in the event of a discovery •

SPS Annual Meeting 2024,

11/09/2024

- **SHiP/BDF**: the next SPS-based facility • at the CERN intensity frontier
- Rich physics programme, covering FIPs • searches in decay and scattering, and neutrino physics
- Substantial **swiss** involvement:
 - CERN EP
 - University of Zurich (UZH)
 - EPFL

Plenty of opportunities to contribute!

CONCLUSIONS

