

UNIVERSITÉ **DE GENÈVE**

FACULTÉ DES SCIENCES

Search for RPV SUSY in multi-jet final states

Pantelis Kontaxakis on behalf of the Analysis Team* (paper)

* Involved from Swiss Institutes: - University of Geneva **Stefano Franchellucci Pantelis Kontaxakis Anna Sfyrla**

- University of Bern Lea Halser John Anders (former member) SPS Annual Meeting 2024

September 12, 2024

Motivation

Importance of exploring SUSY variants Focus on relaxing experimental constraints

R-Parity-Violating (RPV) SUSY

- RPV models have less restrictive limits
- Challenging final states without significant MET
- Comparatively looser limits that RPC searches

$= \frac{1}{2} \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{iik} L_i Q_j \bar{D}_k$ W_{RPV}

Pantelis Kontaxakis

$$+\frac{1}{2}\lambda_{ijk}^{\prime\prime}\bar{U}_i\bar{D}_j\bar{D}_k$$

2x5 - cascade decay

Previous Limits

OPartial Run-2 analysis published (paper) Description: Descripticon: Description: Descripticon: Description: D

• For the 2x3 model, Run-1 limits remain the same

Pantelis Kontaxakis

Key Challenges

Multi-jet (QCD) background has vastly larger x-section compared to signal

Simulation of QCD is imperfect

Complex combinatorics in event reconstruction

Jet Counting (Cut & Count) Utilizes jet kinematics, event shapes and b-tagging for analysis

Mass Resonance (ML + bump hunting) Employs machine learning to reconstruct gluino 4-momenta

Common Selections

Increased number of energetic jets

• Strong p_T selections at high multiplicity

Jet Counting Method - Search Regions

- Investigate for an excess of events feauturing high-energy je
- Specific signal regions teilored different mass points and b-tag multiplicities
- Sensitive to both direct gluino decay and cascade schenarios

ets		$n_{ m jets}$	$p_{\mathrm{T}}(j) \; [\mathrm{GeV}]$	C	$n_{b- m jets}$
	SR1	≥ 7	≥ 180	≥ 0.90	
to	$\mathbf{SR2}$	≥ 7	≥ 220	≥ 0.90	
	SR3	≥ 7	≥ 240	≥ 0.90	
	$\mathbf{SR4}$	≥ 8	≥ 180	≥ 0.85	
	$\mathbf{SR5}$	≥ 8	≥ 210	≥ 0.85	
	SR1bj	≥ 7	≥ 180	≥ 0.85	≥ 2
	SR2bj	≥ 8	≥ 180	≥ 0.85	≥ 2

Jet Counting Method - Background Estimation

Method similar to previous analyses • $\sqrt{s} = 7$ TeV, $\sqrt{s} = 8$ TeV

normalization

Jet Counting Method - Background Validation

• Validation of the method in the phase space close to the SRs Output Consistent across all regions within 1 sigma

	$n_{ m jets}$	$p_{ m T}(j) \ [{ m GeV}]$	C	Background Expectation	Data
VR-A1	5	≥ 180	≥ 0.80	$73000\substack{+1800 \\ -2400}$	70184
VR-A2		≥ 160	≥ 0.85	$65000\substack{+1800 \\ -2200}$	64985
VR-A3		≥ 150	≥ 0.90	$30000\substack{+2100\\-1000}$	30360
VR-B1	6	≥ 120	≥ 0.80	$80000\substack{+2100\\-2800}$	80271
VR-B2		≥ 110	≥ 0.85	$58000\substack{+3900 \\ -1800}$	59997
VR-B3		≥ 100	≥ 0.90	$28000\substack{+1000 \\ -2000}$	30212
VR-C1		≥ 180	≤ 0.60	$350\substack{+37 \\ -72}$	372
VR-C2	≥ 7	≥ 220		47^{+6}_{-10}	35
VR-C3		≥ 240		18^{+4}_{-3}	14
VR-D1	≥ 8	≥ 180	≤ 0.60	23^{+5}_{-6}	16

Mass Resonance - Event Reconstruction

Pantelis Kontaxakis

Aim: Utilize gluinos 4-momenta to dermine their mass

ML used for event reconstruction:

- Mitigates combinatorial background
- Features a novel transformer-inspired architecture
- A single model trained across all signal points simultaneously

Mass Resonance - Background Estimation

- Conduct a traditional bump-hunt analysis on the average-mass spectrum
- Fit with a functional form (3+1 parameters)

$$f(x) = p_1 (1 - x)^{p_2} x^{p_3 + p_4 \ln x}$$

- Introduced "spurious signal" systematic (p4)
- Method validated using both MC multi-jet and a "loose" data sample

No excess seen in any of the SRs with both methods...

O...establishing limits at a 95% confidence level following the **CLs method**

Limits (direct decay)

Out & Count method reached sensitivity down to x-sections of ~0.01pb The ML method improved the limit by a factor of 2

Limits (cascade decay)

Cut & Count method only Limits are <u>hugely extended</u> compared to the previous analysis

complementary approaches:

- Optimized Cut & Count based on jet kinematics and event shapes A novel ML tool for gluino reconstruction

No excesses were observed compared to the expected background:

order of magnitude in x-section

Work in progress and outlook:

- phase space of SUSY (even for RPC)
- Reinterpretation using different coupling values trying to cover large Investigating the same final states with TLA

Pantelis Kontaxakis

Summary A search for RPV SUSY was conducted in a multi-jet final state using two A search for RPV SUSY was conducted in a multi-jet final state using two A search for RPV SUSY was conducted in a multi-jet final state using two A search for RPV SUSY was conducted in a multi-jet final state using two A search for RPV SUSY was conducted in a multi-jet final state using two A search for RPV SUSY was conducted in a multi-jet final state using two A search for RPV SUSY was conducted in a multi-jet final state using two A search for RPV SUSY was conducted in a multi-jet final state using two A search for RPV SUSY was conducted in a multi-jet final state using two A search for RPV SUSY was conducted in a multi-jet final state using two A search for RPV SUSY was conducted in a multi-jet final state using two A search for RPV SUSY was conducted in a multi-jet final state using two A search for RPV SUSY was conducted in a multi-jet final state using two

New limits were set, improving previous results by approximately an

15

Backup Slides

Modeling Uncertainties

- Signal theory uncertainties
- Multi-jet and theory uncertainties from MC being used in background estimate for the jet counting method

Experimental Uncertainties

- Global Reduction JES with 23 nuisance parameters (NPs)
- Simple JER with 8 NPs
- b-tagging and jet-vertex tagging scale factor variations

Methodology

- resonance method

Pantelis Kontaxakis

Systematic Uncertainties

 Closure uncertainties of high C validation regions of jet counting method Spurious signal systematic from choice of background function for the mass

Machine Learning Architecture

More details here: link

Pantelis Kontaxakis

18