

Probing neutrinoless double beta decay with LEGEND

Annual Meeting of the Swiss Physical Society
11 September, 2024
Aravind Remesan Sreekala on behalf of the LEGEND Collaboration
aravind.remesansreekala@physik.uzh.ch

• In some even-even isotopes, β -decay is energetically unfavourable —> they undergo two neutrino double beta $(2\nu\beta\beta)$ decay.

Double beta decay

• In some even-even isotopes, β -decay is energetically unfavourable —> they undergo two neutrino double beta $(2\nu\beta\beta)$ decay.

• In some even-even isotopes, β -decay is energetically unfavourable —> they undergo two neutrino double beta $(2\nu\beta\beta)$ decay.

- Lepton number conserved.
- Standard Model allowed process.
- $T_{1/2}^{2\nu}=1.8^{+0.14}_{-0.10}\cdot 10^{21}\,\mathrm{yr}$ (Age of the Universe is $<1.4\cdot 10^{10}\,\mathrm{yr!}$) [Phys. G: Nucl. Part. Phys. 40 035110]

• In some even-even isotopes, β -decay is energetically unfavourable —> they undergo two neutrino double beta $(2\nu\beta\beta)$ decay.

Double beta decay

- Lepton number conserved.
- Standard Model allowed process.
- $T_{1/2}^{2\nu} = 1.8_{-0.10}^{+0.14} \cdot 10^{21} \text{ yr (Age of the Universe is } < 1.4 \cdot 10^{10} \text{ yr!})$ [Phys. G: Nucl. Part. Phys. 40 035110]

Neutrinoless double beta decay

• In some even-even isotopes, β -decay is energetically unfavourable —> they undergo two neutrino double beta $(2\nu\beta\beta)$ decay.

Double beta decay

- Lepton number conserved.
- Standard Model allowed process.
- $T_{1/2}^{2\nu} = 1.8_{-0.10}^{+0.14} \cdot 10^{21} \text{ yr (Age of the Universe is } < 1.4 \cdot 10^{10} \text{ yr!})$ [Phys. G: Nucl. Part. Phys. 40 035110]

Neutrinoless double beta decay

- Lepton number violation (if observed).
- Hypothetical process.
- $T_{1/2}^{0\nu} > 1.8 \cdot 10^{26} \text{ yr [Phys. Rev. Lett. 125, 252502]}$.
- Evidence of Majorana nature of neutrinos.
- Hint on matter-antimatter asymmetry and insight into neutrino mass ordering.

Neutrinoless Double Beta $(0\nu\beta\beta)$ Decay - The Search

How is the signal measured?

- The total energy of the two emitted electrons is measured.
- For $2\nu\beta\beta$ decay, the energy distribution of the two electrons forms **a continuous** spectrum.
- For $0\nu\beta\beta$ decay, all the energy is carried by the electrons -> Monoenergetic peak at $Q_{\beta\beta}$.
- $Q_{\beta\beta}=$ 2039.061(7) keV for 76 Ge.

Neutrinoless Double Beta $(0\nu\beta\beta)$ Decay - The Search

How is the signal measured?

- The total energy of the two emitted electrons is measured.
- For $2\nu\beta\beta$ decay, the energy distribution of the two electrons forms **a continuous** spectrum.
- For $0\nu\beta\beta$ decay, all the energy is carried by the electrons -> Monoenergetic peak at $Q_{\beta\beta}$.

Prior search for $0\nu\beta\beta$ decay - GERmanium Detector Array (GERDA) results

- 76 Ge-based experiment to search for $0\nu\beta\beta$ decay.
- 100 kg yr of exposure.
- No $0
 u\beta\beta$ decay signal was observed.
- BI = $5.2^{+1.6}_{-1.3} \cdot 10^{-4}$ counts/(keV kg yr).

• $T_{1/2}^{0\nu} > 1.8 \cdot 10^{26} \, \text{yr}.$

Lowest BI achieved in 76 Ge-based experiments searching for $0\nu\beta\beta$ decay

PhysRevLett.125.252502

Large Enriched Germanium Experiment for Neutrinoless double beta Decay

LEGEND-200

- Aims to operate 200 kg of enriched ⁷⁶Ge; 5 years of data taking (1 tonne-year exposure).
- Bl goal of $2 \cdot 10^{-4}$ counts/(keV kg yr); half-life sensitivity goal of $T_{1/2}^{0\nu} > 10^{27}$ yr.
- Data-taking since March 2023 with 142 kg of ⁷⁶Ge.

Large Enriched Germanium Experiment for Neutrinoless double beta Decay

LEGEND-200

- Aims to operate 200 kg of enriched ⁷⁶Ge; 5 years of data taking (1 tonne-year exposure).
- Bl goal of $2 \cdot 10^{-4}$ counts/(keV kg yr); half-life sensitivity goal of $T_{1/2}^{0\nu} > 10^{27}$ yr.
- Data-taking since March 2023 with 142 kg of ⁷⁶Ge.

LEGEND-1000

- Aims to operate 1000 kg of enriched ⁷⁶Ge; 10 years of data taking (10 tonne-year exposure).
- Bl goal of $1 \cdot 10^{-5}$ counts/(keV kg yr); half-life sensitivity goal of $T_{1/2}^{0\nu} > 10^{28}$ yr.
- Under construction; data-taking is planned to start by 2030.

Detector array: 101 High-purity Ge (HPGe)
 detectors on 10 strings, immersed in 64 m³ of LAr.

• Liquid Argon (LAr) cryostat:

- Stores LAr.
- Coolant for the HPGe and passive shield.
- Active veto by detecting LAr scintillation light to reject background.

Wavelength shifting reflectors and fibres:

Surrounds the detector array; converts VUV scintillation light to visible, which is detected by SiPMs.

• Water tank: Stores 590 m³ water; PMTs in the tank detect Cherenkov light from cosmic muons.

LEGEND-200: Background Rejection Methods

1. Liquid Argon Anti-Coincidence

LAr veto

2. Detector Anti-Coincidence

3. Muon Veto

4. Pulse Shape Discrimination

 $\beta\beta$ -decay signal: single-site event energy deposition in a 1 mm³ volume.

pulse shape discrimination

Dataset after Muon veto and Detector Anti-Coincidence Cuts

- Physics data taken from March 2023 February 2024; 48.3 kg yr exposure.
- ullet Blinding was applied to a 50 keV window around $Q_{etaeta^{-}}$
- >95% of physics events survive after the cuts.

LEGEND talk at Nu24, Milan

Dataset after LAr Anti-Coincidence

- Multi-site Compton events are effectively tagged.
- High survival fraction of alphas.

LEGEND talk at Nu24, Milan

Dataset after Pulse Shape Discrimination

Pure $2\nu\beta\beta$ decay spectrum at lower energies

LEGEND-200: First results

BEFORE UNBLINDING

• 5 events in BI window after all analysis cuts.

LEGEND-200: First results

AFTER UNBLINDING

- Unblinding on 13 June 2024.
- 7 events survive in the BI window after analysis cuts.

BI (at 90% C.L) =
$$(5.3 \pm 2.2) \cdot 10^{-4}$$
 counts/(keV kg yr)

∼GERDA worldleading level

BI is higher than expected

Combined fit from GERDA, MAJORANA and LEGEND:

$$\mathsf{T}_{1/2}^{0
u} > 1.9 \cdot 10^{26}\,\mathsf{yr}$$

LEGEND: What's next?

- Radioassays of materials are ongoing to understand the backgrounds.
- Appox. 35 kg of Ge detectors will be added, increasing the total mass to 177 kg.
- Publication of the first results is in progress.
- Physics data taking to resume in the Fall of 2024.

Summary

- LEGEND-200 completed one year of data-taking; the first results were unblinded in June 2024.
- 7 events in the Background Estimation window.
- BI = $(5.3 \pm 2.2) \cdot 10^{-4}$ counts/(keV kg yr) -> Higher than expected. Radioassay campaign ongoing to understand backgrounds.
- GERDA + MAJORANA + LEGEND combined limit for half-life is ${\rm T}_{1/2}^{0\nu} > 1.9 \cdot 10^{26} \, {\rm yr}.$
- LEGEND-1000 under construction; data-taking from 2030 onwards.

11 Sep, 2024 Aravind Remesan Sreekala

Backups

LEGEND-200 Detectors

Germanium is excellent for $0\nu\beta\beta$ searches

- Source and detector: high efficiency
- Offers excellent energy resolution (0.1% at $Q_{\beta\beta}$ best in the field as of June 2024)
- Well-established technology
- Lowest background per FWHM energy resolution in the field

- Good energy resolution and PSD
- Larger than BEGe and PPC; fewer channels and lesser background
- The surface-volume ratio is better

11 Sep, 2024 Aravind Remesan Sreekala 22

LEGEND-200: First results

- Physics data taken from March 2023 February 2024.
- SILVER Dataset: All detectors in 'ON'. 76.2 kg yr exposure
- GOLDEN Dataset: PSD corrections applied. 48.3 kg yr exposure.

