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X17 analysis ~ The beryllium anomaly

The beryllium anomaly
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In 2016 the ATOMKI collaboration found an excess in the ==
"Li(p,e*e”)3Be reaction: an excess of event is found in the internal 2
pair conversion (IPC). 10
Excess was attributed to a light boson: | |
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Figure: Relative angle distribution of the IPC pairs from [1].
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The beryllium anomaly

__Proton cross section on lithium
17.64 MeV y

The anomaly was observed in the 1.03 MeV
resonance.

Additionally it was observed by ATOMKI in the
3H(p,e*e™)*He process [2] and in the
1B (p,e*e™)!2C process [3].
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All measurements were performed with the same
detection scheme in the plane perpendicular to the
proton beam.
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The beryllium anomaly

Proton cross section on lithium

17,64 MeV y

The anomaly was observed in the 1.03 MeV Used for MEG
resonance. _ 1073 calibrations
Additionally it was observed by ATOMKI in the §
3H(p,e*e™)*He process [2] and in the <
1B (p,e*e™)!2C process [3]. 3
All measurements were performed with the same @10
detection scheme in the plane perpendicular to the S
proton beam. 18.15 MeV y
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The beryllium anomaly

Proton cross section on lithium

The anomaly was observed in the 1.03 MeV 1764 MLy

resonance.
, Used for MEG
Additionally it was observed by ATOMKI in the 10 calibrations

3H(p,e*e™)*He process [2] and in the
B(p,e*e™)!2C process [3].

All measurements were performed with the same
detection scheme in the plane perpendicular to the
proton beam.

— Among other efforts, MEG Il can provide an
independent test in a wider angular acceptance.
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MEG II detector
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MEG II detector
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MEG II detector
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Backgrounds

nalysis  Blinding strategy
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The main backgrounds are: 03
e internal pair creation (IPC)

e external pair creation
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Backgrounds

Background MC production - July 2023
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Backgrounds

Background MC production - July 2023
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Backgrounds

Background MC production - July 2023
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2023 physics run

Proton cross section on lithium
|
17.64 MeV y

During 2023 physics run:

e 4weeks of data taking producing mostly 1073
the 17.6 MeV line

@ proton beam energy at 1080 keV

@ beam composition: H* ~75 % — H} ~25 %

o thick LiPON target (~7 um)
1074

Cross section [ubn]

— The IPC backgrounds are split in three
contributions from different proton interaction 18.15 MeV 'y

energies and two signal PDFs are included. ’\
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2023 data - blinding

X17 analysis ~ Blinding strategy
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X17 analysis ~ Likelihood analysis

Likelihood analysis
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X17 analysis ~ Likelihood analysis

Best fit - sidebands
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@ 20 % IPC from higher energy
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Status
Status

e 2022 engineering run and 2023 physics run DONE
o Pair reconstruction and track selection DONE

o 2023 data reprocessing DONE

o Sidebands check DONE

o Mass MC production DONE

o Unblinding DONE (under collaboration review)

o An additional run aiming at exciting the 1030keV only is planned with a higher quality target
(already available) and improved beam quality (already obtained)
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Thank you for your attention!
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Beryllium lines
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Gauge coupling limits
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Shape systematics

Systematic uncertainties linked to low MC statistics can be accounted for by means of a Beeston-Barlow
likelihood or by some lighter version (see later). How to account for shape systematics?

— Template Morphing [5]. Just fancy name for histogram interpolation. There are different techniques
to do so, but the principle is the same:

o define a systematic effect as a nuisance

e compute the MC templates as a function of different values of the nuisance (typically +10 and
nominal value)

e interpolate/extrapolate

e constrain the nuisance with an appropriate PDF, typically gaussian
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Template morphing

To include the treatment of systematics which cause distortions in the PDFs we can use template
morphing. We can use the vertical morphing:

e for each population the templates are computed from MC for some value of the nuisance parameters
(this is done only once)

o the estimated template is a linear combination of these histograms which depends on the value of
the nuisance

e the interpolation is done on a bin wise base, so the bins are independently interpolated
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Template morphing - 1 variable only

Here, the magnetic field scale is the nuisance
parameter.

The reference templates are generated for
scale variations of 0.5 % in the range +2.5 %.

Morphing of the IPC 17.6 template
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Morphing many parameters

. . 014
If more nuisances are needed than just the '

scale of the magnetic field:

e we divide each reference template by the
nominal

e we interpolate the ratios of the histograms ®Hist1,up

e for a given value of the nuisances we
multiply the ratios all toghether with the

nominal template ° - .-
Histoan [Histo Histoup o

At the moment only one of such
systematics is included, the magnetic field # Hist1 an
scale.

In addition to this, the signal templates are
interpolated on the X17 mass (see later in the
presentation).
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Beeston-Barlow lite

The Beeston-Barlow approach accounts for uncertainty
statistics by fitting each bin of each population with a
Poisson PDF.

Eventually we are interested in the effect of the total bin
uncertainty. Can account it with a gaussian or Poisson
term:

e analytic expression in both cases
e much faster
e empty template bins are ignored
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Full likelihood

The full likelihood reads like:

L = Lgaa X Lstars X -Eshape X Leonstraint = (1)
Di o~ f; . Herfi g Biberfi
ie i o Pittesr.
_ l—[(f, y Bitterri)" )x @)
i D,' HMe ff,‘!
_ (am—ay, 0)? (’11*"21,0)2
ZJ(,I (3)

X l_[ — ¢ 2:ram X l_[
V270, Vam a'm

with i running on the bins, m on the shape systematics treated with morphing and / on additional
parameters for which we have an input from theory (IPC15 percentage) or additional constraints.
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Likelihood parametrization

The fitted parameters are:
@ The total yields of the three proton energy slices are fitted in the likelihood:
o Nipcaoo, number of IPC events from the 400 keV slice;
o Nipc00, number of IPC events from the 700 keV slice;
e Nipciooo, number of IPC events from the 1000 keV slice.

o The fraction of IPC 18 for each proton energy slice is fitted, with the addition of a Gaussian constraint for each of them based
on the available data in the literature:

o precizs = Nieci7.6/(Niecias + Nipciz.6), from BGO expected to be 66.3(17) %;
@ pipci7o = Nipci7.9/(Nipciao + Nipci7.9), from literature expected to be 48.2(19) %;
o pipcis. = Niecis./(Niecisa + Niecis.1), from literature expected to be 42(2) %.

@ The ratio of the acceptance of IPC 15 and IPC 18 in the MC, Fipcis.

The yields of EPC 15 and EPC 18 are fitted and unconstrained.
o The yield of the fakes is fitted and unconstrained.

@ The energy scale ayi.1q, included as a shape nuisance.
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Beeston-Barlow lite

In this approach, a multiplicative factor is introduced to model the statistical fluctuations due to systematics.
Ji = Bifi (4)

Two possible approaches are:
@ Conway’s [6]: the factor is Gauss distributed. The bin likelihood is:

;- 1)?
log £, = Dyloghifi~fifi - L )
20'ﬁi
O'f,
op = L ®)
s fi
o Dembinski-Abdelmotteleb’s [7]: the factor is Poisson distributed. The bin likelihood is:
logLi = DjlogBifi = Bifi + fierr108Bifiers — Bifiess )
-\ 2
i Di + fier
fiers (L) - Bi= 176” (8)
gf Ji+ fi,ejf

with f;.rr the number of Poisson distributed events which have a relative uncertainty equal to f;.
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Beeston-Barlow lite

In this approach, a multiplicative factor is introduced to model the statistical fluctuations due to systematics:
fi = Bifi (©)

Two possible approaches are:
@ Conway'’s [6]: the factor is Gauss distributed. The bin likelihood is:

_ Bi—1?
logL; = DilogBifi—Bifi - 5 (10)
20—5,‘

T
o = f’? (11)

1

o Dembinski-Abdelmotteleb’s [7]: the factor is Poisson distributed. The bin likelihood is:
logL; = DilogBifi —Bifi + fierr10gBificrs = Bifiers (12)
2
fi ) Di + fiers

' | - Bi= = 13
Jiefs ((rﬁ T oty (13)

with f;.rr the number of Poisson distributed events which have a relative uncertainty equal to f;. This approach tends to
Conway'’s at high statistics, but it's more robust in the low statistics regime.
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