

Observational Prospects of Self-Interacting Scalar Superradiance with Next-Generation Gravitational-Wave Detectors (arXiv:2407.04304)

Spencer Collaviti^{1,2}

On behalf of: S. Collaviti^{1,2} L. Sun¹, M. Galanis³, M. Baryakhtar⁴ ¹OzGrav-ANU ²EPFL ³Perimeter Institute ⁴University of Washington

SPS Annual Meeting 11/09/2024

spencer.collaviti@epfl.ch

Presentation Outline

- Motivation for ultralight scalar searches
- Theoretical foundations
 - How do ultralight particles produce gravitational waves?
 - What is self-interaction and what is its relevance?
- Observational Prospects
 - The gravitational wave signatures
 - Comparison to current and next-generation detector sensitivities

Motivation for Ultralight Scalar Searches

Motivation for Ultralight Scalar Searches

- Ultralight (~ $10^{-12} \text{ eV}/c^2$) scalars do not appear in the Standard Model
- However, several wellmotivated candidates. E.g.:
 - QCD axion
 - String axions
- Gravitational-wave (GW) searches provide a modelindependent search mechanism

CERN CC BY-SA 4.0

Theoretical Foundations

GWs from ultralight particles

GWs from Ultralight Particles

- Like all massive objects, ultralight particles produce GWs when they accelerate
- Yet, (obviously) the GWs from a single scalar are very weak
- The key is black holes:
 - Bind ultralight scalars in rotating orbitals
 - Superradiantly multiply bound scalars to a total mass $> 1 M_{\odot}$ (~10⁷⁸ particles)

Gravitational Binding of Ultralight Scalars

- Ultralight scalars bind to black holes analogously to the electrons in a hydrogen atom
- The binding is driven by:
 - An attractive potential (gravity)
 - Wave-like properties of particles (Compton wavelength)
- In practice, a two-level system is formed:
 - *n*=2,*l*=*m*=1 (211)
 - *n*=3,*l*=*m*=2 (322)

Black Hole Superradiance

- We cannot extract information from a black hole.
- We *can* extract energy from a black hole (Hawking radiation, Penrose process, ...)
- The extraction of the rotational energy from a black hole by a wave is termed black hole superradiance
 - → Proceeds from vacuum minima until the rotational energy of the black hole is depleted (up to 29% of the total mass energy)
 - \rightarrow Drives the exponential growth of ultralight scalars

Superradiance

- Classical phenomenon where a wave is amplified by a rotating object
- This growth is fueled by the object's rotational energy

Superradiance of a Bound State

- If the wave is bound near the rotating object, it is continually amplified
- This leads to exponential growth of the wave until the rotational energy is depleted

GWs from Ultralight Particles

- We have bound energy levels, with rotation rates in the hundreds of Hz
- We have a mass of bosons up to 29% of a black hole's mass
- \rightarrow Potential for appreciable gravitational waves

Non-Self-Interacting Model of Ultralight Scalars

- The processes we have described so far constitute the non-selfinteracting model of ultralight scalars
- This model has been studied with:
 - GW searches
 - Black hole spindown searches
- Non-self-interacting ultralight scalars largely excluded
- The end?

Self-Interaction

- Ultralight scalars are (almost generically) expected to have a φ^4 term in the Lagrangian
- Induces coupling between the two-level bound system
 - → Reduction in black hole spindown
 - \rightarrow Weaker gravitational waves
- Ultralight scalars may still have observational prospects

Observational Prospects

Detector Sensitivities

- The detectable GW strain scales linearly with the amplitude spectral density (ASD): $h(v) \propto S_h^{1/2}(v)$
- We use the ASD from nextgeneration detectors to scale the sensitivity from past results
- Generically, isolated systems (dashed line) show improved sensitivity over binary systems (solid line)

Observational Prospects

- We have presented:
 - GW strains and frequencies expected for each ultralight scalar mass and self-interaction strength
 - Sensitivity of GW detectors to each frequency
- A simple comparison yields the observational prospects

SPS Annual Meeting 11/09/2024

Conclusion

Conclusion

- GW searches provide a model-independent probe of ultralight scalars
- Self-interactions weaken the GW and black hole spin-down signals expected, and allow ultralight scalars to have escaped past searches
- There exist observational prospects for self-interacting ultralight scalars with next-generation gravitational wave detectors

Additional Material

Self-Interacting Model

- We adopt the self-interacting model of Baryakhtar et al. 2021.
- This is described by the differential equation:

$$\begin{split} \dot{\varepsilon}_{211} &= \gamma_{\rm BH}^{211} \varepsilon_{211} - 2\gamma_{211\times 211}^{\rm GW} \varepsilon_{211}^2 + \gamma_{322}^{211\times GW} \varepsilon_{211} \varepsilon_{322} \\ &- 2\gamma_{211\times 211}^{322\times BH} \varepsilon_{211}^2 \varepsilon_{322} + \gamma_{322\times 322}^{211\times 0} \varepsilon_{211} \varepsilon_{322}^2 \\ \dot{\varepsilon}_{322} &= \gamma_{\rm BH}^{322} \varepsilon_{322} - 2\gamma_{322\times 322}^{\rm GW} \varepsilon_{322}^2 - \gamma_{322}^{211\times GW} \varepsilon_{211} \varepsilon_{322} \\ &+ \gamma_{211\times 211}^{322\times BH} \varepsilon_{211}^2 \varepsilon_{322} - 2\gamma_{322\times 322}^{211\times 0} \varepsilon_{211} \varepsilon_{322}^2 \\ \dot{\chi} &= -\gamma_{\rm BH}^{211} \varepsilon_{211} - 2\gamma_{\rm BH}^{322} \varepsilon_{322} \\ \dot{\chi} &= -\gamma_{\rm BH}^{211} \varepsilon_{211} - 2\gamma_{\rm BH}^{322} \varepsilon_{322} \\ \dot{M} &= \frac{GM^2 m_b}{\hbar c} \left(-\gamma_{\rm BH}^{211} \varepsilon_{211} - \gamma_{\rm BH}^{322} \varepsilon_{322} + \gamma_{211\times 211}^{322\times BH} \varepsilon_{212}^2 \right) \end{split}$$

Cloud Evolution

- Three competing rates drive the evolution of ultralight scalar clouds:
 - 1. Superradiant growth rate
 - 2. Gravitational wave decay rate
 - 3. Self-interactive coupling rate
- The interplay of these three rates leads to four (main) regimes of cloud evolution dynamics
 - Top: Gravitational (negligible selfinteraction) regime
 - Bottom: Moderate self-interaction regime

Harmonic Equilibrium

Frequency Drift

- GWs from ultralight scalars are only quasi-monochromatic
- Frequency drift is induced by:
 - Evolution of the black hole mass
 - Higher-order corrections to the hydrogenic energy levels (self-gravity, self-interaction)
- Frequency drift has consequences for sensitivity
- Drift in self-interactive regimes is comparable to gravitational regime

MOA-2011

Right: the expected GW signatures of ultralight scalars around MOA-2011 with the following parameters:

Property	Value
Mass (M $_{\odot}$)	7.3
Initial spin (dimensionless)	0.99
Inclination (°)	90.0°
Distance (kpc)	1.58
Ages Considered (yr)	$\{10^4, 10^6, 10^8\}$

Cygnus X-1 (10⁶ yr)

Right: the expected GW signatures of ultralight scalars around Cygnus X-1 with the following parameters:

Property	Value
Mass (M _☉)	14.8
Initial spin (dimensionless)	0.99
Inclination (°)	27.1°
Distance (kpc)	1.86
Age (yr)	1.0×10^{6}

Angular Dependence

• The characteristic strain of a gravitationalwave mode is:

$$h_{0, \text{mode}} = \left(\frac{10GP_{\text{mode}}}{c^3 r^2 \omega_{\text{mode}}^2}\right)^{1/2}$$

The *effective* (measurable) strain at a given inclination, *ι*, is:

$$h_{\text{mode}}(\iota) = \sqrt{\frac{8\pi}{5}} h_{0, \text{ mode}} \left[\frac{\left(\frac{dP}{d\Omega}\right)_{\text{mode}}(\iota)}{P_{\text{mode}}} \right]^{1/2}$$

• → Angular dependencies

