Annual Meeting of the Swiss Physical Society 2024

Contribution ID: 129 Type: Poster

[533] Electronic structure of encapsulated mono-, bi- and trilayer T_d-MoTe₂

Tuesday 10 September 2024 19:45 (1 minute)

Bulk T_d -MoTe₂ is a type-II Weyl semimetal and becomes superconducting at a critical temperature of $T_c=0.1$, K. Remarkably, superconductivity becomes far more robust in the 2D-limit, contrary to the trend in ultrathin metal-films. Recent transport measurements reported an increase in T_c for decreasing thickness, with $T_c=7.6$, K in the monolayer. The reasons for the strong increase in T_c remains unknown. Here, we present the electronic structure of exfoliated mono-, bi- and trilayer T_d -MoTe₂ probed by ARPES. The electron pocket of monolayer MoTe₂ shows signatures of strong coupling to optical phonons with $\lambda\approx1.5$. In bi- and trilayer MoTe₂ electron-phonon coupling is weaker consistent with thickness dependence of T_c .

Author: ISSING, Julia (University of Geneva)

Co-authors: GUTIÉRREZ-LEZAMA, Ignacio (University of Geneva); VON ROHR, Fabian (University of Geneva); MOR-PURGO, Alberto (University of Geneva); GIBERTINI, Marco (University of Modena and Reggio Emila); TAMAI, Anna (University of Geneva); BAUMBERGER, Felix (University of Geneva)

Presenter: ISSING, Julia (University of Geneva)

Session Classification: Poster Session

Track Classification: Electron and photon spectroscopies of quantum materials