

AMPLIFY a grazing incidence instrument concept for SINQ

Adjustable Monochromator to Perform Liquid grazing Incidence, Focused or magnetic Yoneda scattering

Artur Glavic SPS Neutron Session, 10 August 2024

Grazing Incidence Small Angle Scattering (GISAS)

2

PSI

GISANS Applications

- Artificial spin-systems [3]
- Complex spin-textures (e.g. Skyrmions)
- Correlated magnetic domains in multilayers [4]
- Neutron optics characterization
- (Organic) photovoltaics and fuel cells [5,7] _____
- Adsorbed microgels [6]
- Biology (structure within membranes, large molecules on surfaces, membranes in structured environments)
- Food science [9]

[1] N. Paul, J.-F. Moulin, G. Mangiapia, A. Kriele, P. Müller-Buschbaum, M. Opel, and A. Paul, Scientific Reports 10, (2020).

[2] E. Wetterskog, et al., Nanoscale, 8, (2016).

3

- [4] E. Kentzinger, et al., Physica B: Condensed Matter 397, 43 (2007). / A. Stellhorn, et al., J. Magnetism and Magnetic Materials 476 (2019)
- [5] P. Müller-Buschbaum, Advanced Materials 26, 7692 (2014).
- [6] T. Kyrey, M. Ganeva, K. Gawlitza, J. Witte, R. von Klitzing, O. Soltwedel, Z. Di, S. Wellert, and O. Holderer, Physica B: Condensed Matter 551, 172 (2018).

[7] J. Schlipf, L. Bießmann, L. Oesinghaus, E. Berger, E. Metwalli, J. A. Lercher, L. Porcar, and P. Müller-Buschbaum, The Journal of Physical Chemistry Letters 9, 2015 (2018).

[8] S. Ueda, S. Koizumi, A. Ohira, S. Kuroda, and H. Frielinghaus, Physica B: Condensed Matter 551, 309 (2018).

[9] P. Kadakia, et al., Adv. Healthcare Mater. **13**, 2302596 (2024)

^[3] P. Pip, A. Glavic, S. H. Skjærvø, A. Weber, A. Smerald, K. Zhernenkov, N. Leo, F. Mila, L. Philippe, and L. J. Heyderman, Nanoscale Horizons 6, 474 (2021).

HIPA Accelerator, Muons and PSI (1) Cockcroft-Walton: proton source and first accelerator stage (2) Injector 2: second proton expansion acceleration stage (3) Ring cyclotron: Third proton accelerator stage to 1.4 MW. (4) Neutron source SINQ. (5) IMPACT target. (6) Facility for nuclear medicine.

Science Drivers for a SINQ expansion

5

Instrument Whish-List

[a] S. Nouhi, M. S. Hellsing, V. Kapaklis, and A. R. Rennie, Journal of Applied Crystallography **50**, 1066 (2017).

• Flexibility in wavelength resolution to control k_{iz}:

- ~1% for depth sensitivity
- ~10% for critical edge enhancement
- Independent resolution
 - Vertical: depth resolution, reflectometer like
 - Horizontal: in-plane resolution, SANS like
- Multiple beam stops for direct, reflected beams
- Long wavelengths (FOM=I $\cdot\lambda^4$)
- Definition of incident angle on free liquid surface
- Specific sample environments (e.g. sheer cell)
- Polarization analysis (Yoneda line)
- Very low instrument background

6

Possible location for AMPLIFY

- Coldest part of source
- Deflect at 17 m
- Largest distance to other instruments and direct line-of-sight

7

Instrument Concept - AMPLIFY

High-Res Mode w/ Refocusing

9

Monochromator Concept - AMPLIFY

Highly reflective Ni/Ti coating (~2000 bilayers)

Monochromator Concept - AMPLIFY

💙 PSI

AMPLIFY Gift Bag

- Low background
 - Distance to other instruments
 Low amount of unused neutrons
- Continuous wavelength resolution

 Optimized for experiment
 Independent of angular resolution
- Separate vertical and horizontal resolution

7000

50000

40000

30000

20000

10000

 Medium to high in-plane resolution due to switch to focus on detector (3.8e⁻³ to 2.5e⁻⁴ Å⁻¹)

horizontal beam size

Simulation of Example Samples

- Integrated McStas with BornAgain DWBA calculations to simulate performance of AMPLIFY on various model systems
- Use published measurement on SiO₂ nano-spheres, self-organized in a monolayer near the Si-D₂O interface [1]
- Losses from windows/air scattering not included

Neutron Experiment Results on Mirrors

- Experimental amount of scattering not prohibitive, mostly in off-specular direction
- Higher m-value mirrors only slightly increase scattered intensity
- Sample-sample variations of factor 2-4 for same m-value (substrate quality?)
- Even with improvised guide field (thanks Jochen), magnetic mirrors are in same range

Simulated Influence of Scattering on Focusing

- Simulation of scattering on focusing experiments and monochromator using McStas
- Limited influence on wavelength suppression when detuning mirrors
- No noticeable different in the reference sample simulation

Thank you for your Attention

- AMPLIFY combines
 - Advantage of a continuous source to do GISANS with fixed k_i
 - Monochromator concept gives independent flexibility of wavelength, horizontal and vertical angular resolution
 - Technologies are already possible, with some R&D the performance could further be improved (monochromator transmission and scattering)
- Expert support needed!
 - If you'd like to support the project by contributing to the science case description for the instrument proposal until fall 2024, please contact me at <u>artur.glavic@psi.ch</u>

Possible Influence of Scattering on Focusing

- Focusing on detector to improve high-resolution performance
- Off-specular and GISANS scattering from the Mirrors might blur the beam and prohibit this application

- Performed test experiment at SANS-I @ PSI
- Measurement of up to m=7 off-specular and GISANS scattering up to m=6
- Additionally, a set of polarizing mirrors (Fe/Si) for comparison

GISANS

Test of Monochromator Performance

- Monochromator structure with linear thickness gradient
- Optimal model ~100% reflectivity
- Real system 80%-90% reflectivity
- Sharpness of wavelength suppression follows ideal curve
- Space for improvement with limited R&D

One-shot test sample by

Comparison to Conventional Concept

- Reference concept:
 - SANS-like straight guide with bender and flexible collimation length (ignore incident angle requirement)
 - Wavelength resolution from velocity selector and possible improvement to 1%/3% with (Fermi-)chopper
- Result compared to AMPLIFY:
 - Lower intensity for same resolution
 - Horizontal resolution structured by bender influence ٠
 - Longer collimation required, still best resolution 4x worse than with focusing
 - Chopped beam spreads over 10% band with different intensity further reducing efficiency

horizontal beam size

wavelength spread