EPFL

# CHRONOBIOLOGY OF CHECKPOINT OVERRIDE

Shedding light on the key regulator controlling DNA Damage Checkpoint override timing in yeast



Lorenzo Scutteri (LPBS, EPFL)

Swiss Physical Society Annual Meeting - 12.09.2024

# **CELL CYCLE CHECKPOINTS**



K. Finn et al, CMLS (2011)

## **DNA DAMAGE CHECKPOINT SIGNALING PATHWAY**





## **DNA DAMAGE CHECKPOINT OVERRIDE**

Checkpoint override represents a trade-off between risk and speed for offspring maximization







**Examples of DNA Damage Checkpoint override events** 



# HOW DOES THE DDC DETERMINE WHEN OVERRIDE OCCURS?



EPFL

## **RESEARCH PLAN**

W**Gente**pe k**acenkacio**t



# What about adding a 2<sup>nd</sup> copy of the gene?



### Strong Over-expression



## **RESEARCH PLAN**

Override time should be extremely sensitive to the presence of a 2<sup>nd</sup> copy of the key regulator



EPFL

## **CLONING STRATEGY**



# **INVESTIGATE OVERRIDE TIME USING MICROFLUIDIC CHIPS**

#### Genotype yeast strain:

cln1-3Δ MET3pr-CLN2 GAL1pr-HO URA3-HOcs HTB2-mCherry MATα-syn





## **INVESTIGATE OVERRIDE TIME USING MICROFLUIDIC CHIPS**







#### **Examples of DNA Damage Checkpoint override events**

| Override |   | Division |   | Budding |
|----------|---|----------|---|---------|
| time     | = | time     | _ | time    |



# **OVERRIDE TIMES FOR 2<sup>nd</sup> COPIES OF DDC REGULATORS**



#### EPFL

# **OVERRIDE TIMES FOR COMBINATION OF 2<sup>nd</sup> COPIES**



# **RAD53 CONTROLS OVERRIDE TIMING OVER CDC5**



| Number of overriding cells |                    |  |  |  |
|----------------------------|--------------------|--|--|--|
|                            | Control: 161/166   |  |  |  |
|                            | CDC5: 144/145      |  |  |  |
|                            | RAD53: 55/84       |  |  |  |
|                            | CDC5+RAD53: 99/141 |  |  |  |

# **MODELS AND HYPOTHESES**

#### **RAD53 SEQUESTERS**

#### **CDC5 IN THE NUCLEUS**



Cdc5 targets its substrates in a timely manner by changing subcellular localization throughout the cell-cycle.

#### **CDC5 ACTS BY INHIBITING**

#### **RAD53 DIMERIZATION**



Cdc5 inhibits Rad53 by phosphorylating the dimer interface, preventing homo-dimerization. The 2<sup>nd</sup> copy of Rad53 increases the dimer:monomer ratio.

EPFL

## **CONCLUSION**

- DNA Damage Checkpoint override has significant implications for cancer biology, yet its regulation and temporal dynamics remain poorly understood.
- We expressed a 2<sup>nd</sup> copy of the key DDC regulators to explore their impact on checkpoint override timing at the single-cell level.
- > Our findings indicate two critical elements acting as key timers:
  - RAD53 CDC5 feedback loop
  - Handoff DDC  $\rightarrow$  SAC
- Future research directions:
  - Testing CDC5 tagged with NLS and NES
  - Mutants of CDC5 and RAD53 with no reciprocal inhibition
  - Fluorescent labeling of CDC5 and RAD53





## ACKNOWLEDGEMENTS





This project has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 945363.



<image>

Prof. Patrick Barth Aurélien Oggier Lucas Rudden Mahdi Hijazi Aditya Sengar Matthieu Marfoglia Liyan Smeding Ana Rico Villarreal Gabriele Gambardella Remo Bättig Shuhao Zhang Prof. Sahand Rahi Roxane Dervey Elif Gencturk Vojislav Gligorovski Mahsa Barzegarkeshteli Marco Labagnara Roxane Oesterle Matthieu Schmidt Alice Gross