ETH zürich | 55

A physicist's approach to neuroscience

Janos Vörös

Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, University and ETH Zurich, Switzerland http://www.lbb.ethz.ch

Richard Feynman May 11, 1918 – February 15, 1988

ETH zürich | 155

How do we study the brain?

Top-down approach

Whole brain 1-100 billion neurons

- + Studying the "real thing"
- Low resolution on humans (MRI)
- Limited intervention
- Only a fraction of the neurons are measured
- Too complex to model

Bottom-up approach

Patient iPSC-derived 1-10'000 cells

- Artificial neural network
- + Well-defined = more reproducible
- + Many interventions (adding, removing cells, drugs)
- + Each neuron can be measured
- + Directly comparable to computational models

Axon-guiding microstructures enable oriented connections

Forró C. et al., Biosens Bioelectron; 2018

Microstructure-based oriented connectivity

PDMS wells

Forro C. et al., Biosensors and Bioelectronics, 2018.

It is a scalable technology – we have hundreds of networks

Forró C. et al., Biosens Bioelectron; 2018

We stimulate one or more electrodes and record the response with all four electrodes

Ihle S. et al., Biosensors and Bioelectronics, 2021.

Plotting the response this way helps visualizing network behavior (Note the hours time scale on the y-axis!)

Reproducible and stable network responses are obtained

Stimulate every 250ms with two different patterns.

Clock-wise stimulation

Counter-clock-wise stimulation

Neural network input "math"

Ihle S. et al., Biosensors and Bioelectronics, 2021.

Comparing experiments with simulations

Selected example of successfully simulating network behavior

Closed-loop stimulation

Network spiking in a circle

A well-defined neuron network on a CMOS MEA

MaxWell Biosystems

Rat cortical primary neurons, DIV21, filtered raw data without averaging Chip Id: 9635 - T₀ = 42.92 s. T = 000.00 ms Electrode y 20 Electrode x 25

Duru J. et al., Frontiers in Neuroscience, 2023.

The post-stimulus answer is always the same (if you stimulate at the same location)

40

35 -

30 -

25

20

The post-stimulus information flow depends on the stimulation site

A neural network with two inputs and one output

time

Same input on both stimulation electrodes

Response to different inputs

Nonlinear behavior can be used as activation functions of existing ANNs

ANN

Fitted differentiable function

Hybrid neural network

Performance of a simple "hybrid" neural network as XOR

 x_1 W u_1 W_{2} Hybrid: $u_1 = W_1^T x$ $u_2 = W_2^T norm(\sigma_1(u_1))$ $y = norm(\sigma_2(u_2))$ u - stimulation amplitude $\sigma(\cdot)$ – measurement $norm(\cdot) - normalization$

ETH zürich | 155

Future potential of bottom-up neuroscience technology

Fundamental neuroscience

- Highly reproducible "big" data
- Stimulate and record protocols
- Extreme control over the local environment (including drugs)
- Can be combined with (opto)genetics

Personalized medicine and drug discovery

- Compatible with human iPSC-derived neurons 3R
- Patient derived cells in combination with drugs

Hybrid intelligence

- Highly modular system without size constrains
- Can be interfaced with computational (spiking) neural networks

ETH zürich | 155

Acknowledgment for funding

ETHZ

SNF

Swiss Data Science Center

Human Frontiers for Science Program

FreeNovation, OPO Foundation

Innosuisse

Team: Laboratory of Biosensors and Bioelectronics 2023

