

## Water in soft confinement of lipidic mesophase

Yang Yao<sup>1</sup>, Sara Catalini<sup>2</sup>, Bence Kutus<sup>3</sup>, Johannes Hunger<sup>3</sup>, and Raffaele Mezzenga<sup>4</sup>

<sup>1</sup> Department of Chemistry, University of Basel, Switzerland
<sup>2</sup> European Laboratory for Non-Linear Spectroscopy, LENS, Italy
<sup>3</sup> Max Planck Institute for Polymer Research, MPIP, Germany
<sup>4</sup> Department of Health Sciences and Technology, ETH Zurich, Switzerland



SPS 2024, Sept. 10<sup>th</sup>, Zürich

## Acknowledgement

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra SERI-funded ERC Starting Grant



Prof. Hans-Jürgen Butt MPIP



Prof. George Floudas Uni. Ioannina, MPI-P



Prof. Raffaele Mezzenga ETH Zürich



Exzellenzzentrum

des Kantons Aargau

der Universität Basel und







Dr. Johannes Hunger MPI-P



MPI-P



Dr. Fanni Juranyi PSI

FNSNF

## Map of Permafrost and Ground Ice



3

Life at subzero temperatures

Key: liquid water

Maintain water in liquid state by hard, nano-sized confinement

Liquid water between clays

Mesoporous silica



## Lipidic mesophase



## Inspired by Archaea



The age of Archaea ~3.8 billion years vs. The age of the Earth ~4.54 billion years

#### Archaea Habitats:

- Hot and cold environments;
- Acid or alkaline water;
- Highly saline conditions.





Hahn J, Haug P, System Applied Microbiology, 1986 Woese CR, Kandler O, Wheelis ML, Proc. Natl. Acad. Sci. U.S.A, 1990 https://www.britannica.com/science/archaea https://sciworthy.com/microbes-from-extreme-environments

## Inspired by Archaea



#### Bacteria and eukaryota



Caforio A. & Driessen A. J. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids 2017.

## Lipidic mesophase structure

SAXS



0

 $L_{\alpha}$ + la3d

25

Pn3m

0

0

0

8

 $\nabla$ 

30

## Water crystallization in lipidic mesophase



## Broadband dielectric spectroscopy



Dielectric properties:

- Complex dielectric permittivity  $\varepsilon = \varepsilon' i\varepsilon''$
- Complex conductivity

$$\sigma^* = \sigma' + i\sigma''$$

• Complex electric modulus  $M^* = M' + iM''$ 

as a function of frequency and temperature



## Electromagnetic spectrum



## Water and lipid dynamics in lipidic mesophase

#### Broadband dielectric spectra



## Water and lipid dynamics in lipidic mesophase



## Water and lipid dynamics in lipidic mesophase



#### Relaxation time vs. temperature

## Water in lipidic mesophase



Water state diagram

Nature Nanotechnology, 16(7), 802-810, 2021

## Cryo-enzymatic reactions in lipidic mesophase



## Enzyme conformation in lipidic mesophase (LMP)



#### FTIR

## Lipidic mesophase



## Lipidic mesophase



## Lipidic mesophase phase transition



## Electromagnetic spectrum



#### Hydrogen-bond network of confined water

Confined water



Wavenumber (cm<sup>-1</sup>)

## Collaboration with Dr. Sara Catalini, LENS, Italy

• ice like OH stretching



#### Electromagnetic spectrum



#### Water dynamics during phase transition

#### Collaboration with Dr. Johannes Hunger MPIP, Germany



Angew. Chem. Int. Ed., 133(48), 25478-25484, 2021





**FTIR** analysis







Faraday Discuss., 249, 469-484, 2024



## Summary

- In hard confinement, below 2.6 nm in diameter water was unable to form stable crystals.
- Water confined in the lamellar phase remained in the liquid state down to -120 °C when the water content was below 9.5 wt%.
- In both hard and soft confinement, we detected two dynamically different fractions of water: bound water and interstitial water.
- The hydrogen bond network depends strongly on the geometry of the mesophase.
- Excess water forms new hydrogen bonds with the lipids at the interface between the headgroup and tail.

# **Open PhD position**



## Thank you !