

Wave-particle duality in atom interferometers Precision measurements at the quantum limit

Philipp Treutlein

A symmetron scalar field25,26 has an eective potential symmetric

Atom interferometry:

Matter waves for precision measurements

An atom interferometer on a microchip

Quantum metrology:

Entanglement-enhanced interferometers Quantum foundations with many-particle systems

source mass minimizes screening and is well-suited as a test mass for

Louis de Broglie and the wave-particle duality of matter

Louis de Broglie

When I conceived the first basic ideas of wave mechanics in 1923–1924, I was guided by the aim to perform a real physical synthesis, valid for all particles, of the coexistence of the wave and of the corpuscular aspects that Einstein had introduced for photons in his theory of light quanta in 1905.

L. de Broglie, *The reinterpretation of wave mechanics*, Found. Phys. 1, 5 (1970).

L. de Broglie, *Ondes et quanta*, Comptes rendus 177, 507 (1923).

L. de Broglie, *Recherches sur la théorie des quanta*, Faculté des Sciences de Paris (1924).

3

Double slit interference of He* atoms

Interference pattern appears atom by atom

Wave nature of atom → **interference**

Particle nature of atom → quantum noise

4

Examples of matter waves

 \mathcal{S} and anti-Stokes sidebands. The phonon occupation affects the overall of overall \mathcal{S}

The gravitational shift is proportional to *g* sin (*θ*)*L v*∕

2 2, **φ** is θ**is θ** is θ

Atom interferometry: matter waves for precision measurement

Atom interferometric measurement of gravity

A. Peters et al, Nature 400, 849 (1999) Figure 4. (*a*) An example of a continuous measurement of *g* for over two days. Each data

Atom interferometric measurement of gravity

Stanford University, 2000

Applications: gravity cartography

Detection of underground tunnel with an atom interferometer operated as a gravity gradiometer

Portable systems are commercially available

Stray et al, Nature 602, 590 (2020)

Search for new physics with atom interferometry NATURE PHYSICS DOI: 10.1038/NPHYS4189 LETTERS

Right: Machender interferometer interferometer interferometer interferometer and R The matter cand the recombine of the atomic wave two trajectories near the two trajectories near the two trajectories of the two trajectories of the two trajectories near the two trajectories of the two trajectories of the PHYS UNSEIEI ZEIL 49, ZZO (ZUTO)

Poisson equation:

scheiden statten statten statten Spiegel, mit dem Spiegel, mit dem Spiegel, mit dem Spiegel, mit dem Spiegel, siehe bewegung des Atoms, als die Ausbreiten des Atoms, als die Ausbreiten die Ausbreiten des Atoms, als die A von Rückstößen erreichbar. Dies erste erlaubt es, dies erste erlaubt es, die Empfind-Search for new physics Search for new physics Right: Mach–Zehnder interferometer based on Raman transitions in an optical cavity. Three laser pulses manipulate the caesium atoms during free fall. The pulses split the atomic wavepacket along two di!erent trajectories, reflect the two trajectories near their apex, and then recombine and interfere the

- $\frac{1}{2}$ drifts of fundern lässt. Aus solchen Strahlteilern und Spiegeln und Spiegeln und Spiegeln und Spiegeln und Spiegeln an der Ferometer in der Fe interferometer funktionieren funktionen als als antal nordigieren als also nach den als als antal den als anta · drifts of fundamental constants mass suspended in ultrahigh vacuum is measured. The cylinder has mass *m*cyl =0.19 kg, height *h* and diameter *d*=*h*=2.54 cm. The axial through-hole has
	- Leider ist der angeregte Zustand eine Zustand eine Eine sehr pulse als Strahlteiler und Spiegel für die Materiewellen der • 5th force measurements and coupling to normal matter (\sim 10 μ may both be functions of μ
	- kurzlebig, zerfällt als nach wenigen Nanosekunden spon- (918) \bullet dark energy models (chameleons, symmetrons...) ieleons, symmetrons...)
	- funktion und macht Interferometrie unmöglich. die Dekohärenz lässt sich mit Expedition mit Dekohären mit Dekohären an den genom sich mit Den en den gr Nach einer Sequenz von drei Laserpulsen (Abbildung 2), • Casimir Polder forces **and all the vellen in zwei Teilwellen** and all the vellen in the vellen is characterized by an energy scale *M*, which is expected to be below
	- mehrere Photonen beteiligt sind, vermeiden. Zum Beispiel kan das Atom einem ersten Lasers absorbieren, das nicht mit einem Übergang resonant ist, aufgespalten, reflektiert und dann wieder überlagert wird, aronov-Bonm effect • gravitational Aharonov-Bohm effect surrounding matter geometry22. Here, *^M*Pl = *(*}*c/*8⇡*G)* ¹*/*² ⇡ 2.4 ⇥ ¹⁰¹⁸ GeV is the reduced Planck mass, and 0^a 1 is a screening a large, dense object, r2 a negligible value that minimizes α \bullet C distribution of matter ⇢m*(***x***)* is obtained by solving the nonlinear

A symmetron scalar field25,26 has an eective potential symmetric

Atom interferometry:

Matter waves for precision measurements

An atom interferometer on a microchip

Quantum metrology:

Entanglement-enhanced interferometers Quantum foundations with many-particle systems

source mass minimizes screening and is well-suited as a test mass for

Atom chips: a quantum laboratory on a microchip

Ultracold rubidium atoms at micrometer distance from a room-temperature chip surface

Compact glass cell vacuum chamber

ultra-high vacuum 3 × 10-10 mbar

cooling laser beam

- mirror-MOT
- optical molasses
- optical pumping
- magnetic trap
- transport atoms
- evaporative cooling to Bose-Einstein condensation

Compact glass cell vacuum chamber

ultra-high vacuum 3×10^{-10} mbar

- mirror-MOT
- optical molasses
- optical pumping
- magnetic trap
- transport atoms
- evaporative cooling to Bose-Einstein condensation

all degrees of freedom of atoms in well-defined quantum state

Detection: absorption imaging

ultra-high vacuum 3 × 10-10 mbar

detection beam

Two-component Bose-Einstein condensate of 87Rb atoms

87Rb ground-state hyperfine structure Rabi oscillations

fidelity of π/2-pulse: (99.74±0.04) %

Philipp Treutlein University of Basel P. Böhi et al, Nature Physics 5, 592 (2009)

Philipp Treutlein University of Basel University of Basel Contract of Basel Conversity of Basel Conversity of Basel

in-situ images of BEC with 350 atoms during splitting

Philipp Treutlein University of Basel University of Basel Contract of Basel Conversity of Basel Conversity of Basel \mathfrak{p} and \mathfrak{p} (\mathfrak{p} and \mathfrak{p}) mode, which can when \mathfrak{p} mode, which can when \mathfrak{p}

Philipp Treutlein University of Basel 18 \mathfrak{p} and \mathfrak{p} (\mathfrak{p} and \mathfrak{p}) mode, which can when \mathfrak{p} mode, which can when \mathfrak{p}

P. Böhi et al, Nature Physics 5, 592 (2009) \mathfrak{p} and \mathfrak{p} (\mathfrak{p} and \mathfrak{p}) mode, which can when \mathfrak{p} mode, which can when \mathfrak{p}

P. Böhi et al, Nature Physics 5, 592 (2009) \mathfrak{p} and \mathfrak{p} (\mathfrak{p} and \mathfrak{p}) mode, which can when \mathfrak{p} mode, which can when \mathfrak{p}

A symmetron scalar field25,26 has an eective potential symmetric

Atom interferometry:

Matter waves for precision measurements

An atom interferometer on a microchip

Quantum metrology:

Entanglement-enhanced interferometers Quantum foundations with many-particle systems

source mass minimizes screening and is well-suited as a test mass for

The standard quantum limit (SQL)

Collective spin description

The standard quantum limit (SQL)

Collective spin description

Philipp Treutlein **Example 2018** Pezzè, Smerzi, Oberthaler, Schmied, and Treutlein, Rev Mod Phys 90, 035005 (2018)^{University of Basel}

Quantum metrology with entangled particles

Goal: use entanglement to improve interferometric measurements

Quantum metrology is useful if resources are limited:

- limited source brightness (limited N)
- systematic errors at large N
- small length scale \rightarrow size limits N
- \cdot limited interrogation time T_R

Today's best atomic clocks and interferometers operate at or near the standard quantum limit

Standard quantum limit (SQL)

Spin squeezing

- useful resource for interferometry beyond standard quantum limit
- Δ*θ* = *ξ N*

2

• entanglement witness: ξ^2 < 1 \rightarrow atoms entangled Sørensen, Duan, Cirac, Zoller (2001)

Tomography of spin-squeezed state

Interferometer operating with a spin-squeezed state

20.5 21 21.5 22 22.5 23 23.5 24 24.5 25 25.5 *T^S* (ms)

F igure 6.5: F ist contrast contrast recombination. Ramsey and recombination. Ramsey and recombination. Ramsey and ramse data (blue points) and fitted sine with G inequality fringes (red line). The Ramsey fringes (re **Interference fringes with spin-squeezed state**

Philipp Treutlein Dickeloen et al, Phys. Rev. Lett. 111, 143001 (2013) \cdots , \cdots \cdots

Microwave field measurement beyond the SQL

Interferometer with spin-squeezed state

Philipp Treutlein University of Basel University of Basel Concernent and Rev. Lett. 111, 143001 (2013)

Exploring quantum foundations with massive many-particle systems

Spin-squeezing and many-particle entanglement

- genuine multipartite entanglement
- Wigner function tomography

Riedel et al, Nature 464, 1170 (2010) Schmied et al, New J Phys 13, 065019 (2011)

Many-particle Bell correlations

• Bell correlations in many-particle system detected by global measurements

Schmied et al, Science 352, 441 (2016) Wagner et al, PRL 119, 170403 (2017)

Einstein-Podolsky-Rosen paradox

- Entanglement patterns, EPR steering *a*, Figure 5.8: $\frac{1}{\sqrt{2}}$ correlation depth in a spin-squeezed BEC. Black: the data spin-squeezed BEC. Black: the dat
- EPR paradox between two BECs with 1 error bars. The number of particles is \bullet detected by violation of inequality (5.7) for *k* = 1. Red shaded region: entanglement witnessed

Fadel et al, Science 360, 409 (2018) **Colciaghi et al, PRX 13, 021031 (2023)** *^a* below which there is at least (*k* + 1)-particle

Spatial splitting of spin-squeezed BEC

Spatial splitting of spin-squeezed BEC

Entanglement between two BECs

Einstein-Podolsky-Rosen experiment with two BECs

First observation of the EPR paradox with massive many-particle systems Colciaghi et al, PRX 13, 021031 (2023)

 \blacksquare Thursday, 14:30, Room ETF E 1

indicated by blue dotted lines. The correlations of measurement results (2 covariance ellipses

New frontier: Multi-parameter quantum metrology

array of entangled atomic ensembles

- fixed total N
- fixed number of preparations

Local spin rotations (*π*-pulses) transfer quantum enhancement to target Hadamard mode

$$
\mathbf{e}.\mathbf{g}. \quad \theta_{\text{target}} = (\theta_1 - \theta_2 + \ldots + \theta_M)/\sqrt{M} \qquad \left| \Delta \theta_{\text{target}} = \xi \Delta \theta_{\text{SQL}} \right| \qquad \Delta \theta_{\text{SQL}} = \sqrt{M/N}
$$

Prepare & measure complete set of modes \to all θ_i quantum enhanced $\Delta\theta_i \approx \xi \sqrt{M} \Delta\theta_{\text{SOL}}$

for
$$
N \gg 1
$$
,
 $\xi \sqrt{M} \ll 1$

Philipp Treutlein **Example 2 Baamara et al, Scipost Phys 14, 050 (2023); Gessner Nat Commun 11, 3817 (2020), … ^{University of Basel}**

Multiparameter estimation with three entangled atomic ensembles

entangled spinor BECs

quantum enhancement of four different modes

Conclusion and outlook

- **Atom interferometry**: from inertial sensing and geoscience to searches for new physics
- **de Broglie's wave-particle duality** determines fundamental precision limits of interferometry
- Today's best interferometers operate at this limit
- **Entanglement** can be harnessed to reduce quantum noise and improve precision
- **Quantum metrology**: an exciting research field where precision metrology meets quantum foundations

Quantum Optics and Atomic Physics

Positions available!

Roberto Mottola

Gianni Buser Paolo Colciaghi Maryse Ernzer Suyash Gaikwad Alexandre Huot Lex Joosten Yifan Li

Theory collaborators

Alice Sinatra Youcef Baamara

Philipp Treutlein

