

Wave-particle duality in atom interferometers Precision measurements at the quantum limit

Philipp Treutlein

Atom interferometry:

Matter waves for precision measurements

An atom interferometer on a microchip

Quantum metrology:

Entanglement-enhanced interferometers Quantum foundations with many-particle systems

Louis de Broglie and the wave-particle duality of matter

Louis de Broglie

When I conceived the first basic ideas of wave mechanics in 1923–1924, I was guided by the aim to perform a **real physical synthesis**, valid for all particles, of the **coexistence of the wave and of the corpuscular aspects** that Einstein had introduced for photons in his theory of light quanta in 1905.

L. de Broglie, *The reinterpretation of wave mechanics*, Found. Phys. 1, 5 (1970).

L. de Broglie, *Ondes et quanta*, Comptes rendus 177, 507 (1923).

L. de Broglie, *Recherches sur la théorie des quanta*, Faculté des Sciences de Paris (1924).

Double slit interference of He* atoms

Interference pattern appears atom by atom

Wave nature of atom \rightarrow interference

Particle nature of atom → **quantum noise**

Examples of matter waves

Atom interferometry: matter waves for precision measurement

Atom interferometric measurement of gravity

A. Peters et al, Nature 400, 849 (1999)

Atom interferometric measurement of gravity

Stanford University, 2000

Applications: gravity cartography

Detection of underground tunnel with an atom interferometer operated as a gravity gradiometer

Portable systems are commercially available

Stray et al, Nature 602, 590 (2020)

Search for new physics with atom interferometry

H. Müller and P. Haslinger, Phys Unserer Zeit 49, 228 (2018) Search for new physics

- drifts of fundamental constants
- 5th force measurements
- dark energy models (chameleons, symmetrons...)
- Casimir Polder forces
- gravitational Aharonov-Bohm effect

Atom interferometry:

Matter waves for precision measurements

An atom interferometer on a microchip

Quantum metrology:

Entanglement-enhanced interferometers Quantum foundations with many-particle systems

Atom chips: a quantum laboratory on a microchip

Ultracold rubidium atoms at micrometer distance from a room-temperature chip surface

Compact glass cell vacuum chamber

ultra-high vacuum 3×10^{-10} mbar

cooling laser beam

- mirror-MOT
- optical molasses
- optical pumping
- magnetic trap
- transport atoms
- evaporative cooling to Bose-Einstein condensation

Compact glass cell vacuum chamber

ultra-high vacuum 3×10^{-10} mbar

- mirror-MOT
- optical molasses
- optical pumping
- magnetic trap
- transport atoms
- evaporative cooling to Bose-Einstein condensation

all degrees of freedom of atoms in well-defined quantum state

Detection: absorption imaging

ultra-high vacuum 3 × 10⁻¹⁰ mbar

detection beam

Two-component Bose-Einstein condensate of 87Rb atoms

⁸⁷Rb ground-state hyperfine structure

Rabi oscillations

fidelity of π /2-pulse: (99.74±0.04) %

P. Böhi et al, Nature Physics 5, 592 (2009)

in-situ images of BEC with 350 atoms during splitting

P. Böhi et al, Nature Physics 5, 592 (2009)

Atom interferometry:

Matter waves for precision measurements

An atom interferometer on a microchip

Quantum metrology:

Entanglement-enhanced interferometers Quantum foundations with many-particle systems

Philipp Treutlein

The standard quantum limit (SQL)

Collective spin description

The standard quantum limit (SQL)

Collective spin description

Pezzè, Smerzi, Oberthaler, Schmied, and Treutlein, Rev Mod Phys 90, 035005 (2018)

Quantum metrology with entangled particles

Goal: use entanglement to improve interferometric measurements

Quantum metrology is useful if resources are limited:

- limited source brightness (limited N)
- systematic errors at large N
- small length scale \rightarrow size limits N
- limited interrogation time T_{R}

Today's best atomic clocks and interferometers operate at or near the standard quantum limit

Standard quantum limit (SQL)

Spin squeezing

- useful resource for interferometry beyond standard quantum limit
- $\Delta \theta = \frac{\xi}{\sqrt{N}}$
- entanglement witness:
 ξ² < 1 → atoms entangled
 Sørensen, Duan, Cirac, Zoller (2001)

Tomography of spin-squeezed state

Schmied et al, New J Phys 13, 065019 (2011)

(Noise reduced by -8.7 ± 0.5 dB, contrast C = 94.9%)

 $N = 950 \pm 100$

-20

0

Interferometer operating with a spin-squeezed state

20.5 21 21.5 22 22.5 23 23.5 24 24.5 25 25.5 $T_S \ ({\rm ms})$

Interference fringes with spin-squeezed state

Ockeloen et al, Phys. Rev. Lett. 111, 143001 (2013)

Microwave field measurement beyond the SQL

Interferometer with spin-squeezed state

Philipp Treutlein

Ockeloen et al, Phys. Rev. Lett. 111, 143001 (2013)

Exploring quantum foundations with massive many-particle systems

Spin-squeezing and many-particle entanglement

- genuine multipartite entanglement
- Wigner function tomography

Riedel et al, Nature 464, 1170 (2010) Schmied et al, New J Phys 13, 065019 (2011)

Many-particle Bell correlations

 Bell correlations in many-particle system detected by global measurements

Schmied et al, Science 352, 441 (2016) Wagner et al, PRL 119, 170403 (2017)

Einstein-Podolsky-Rosen paradox

- Entanglement patterns, EPR steering
- EPR paradox between two BECs

Fadel et al, Science 360, 409 (2018) Colciaghi et al, PRX 13, 021031 (2023)

Spatial splitting of spin-squeezed BEC

Spatial splitting of spin-squeezed BEC

Entanglement between two BECs

Einstein-Podolsky-Rosen experiment with two BECs

First observation of the EPR paradox with massive many-particle systems Colciaghi et al, PRX 13, 021031 (2023)

Thursday, 14:30, Room ETF E 1

New frontier: Multi-parameter quantum metrology

Prepare & measure complete set of modes \rightarrow all θ_i quantum enhanced $\Delta \theta_i \approx \xi \sqrt{M} \Delta \theta_{SQL}$

- fixed total N
- fixed number of preparations

for
$$N \gg 1$$
,
 $\xi \sqrt{M} \ll 1$

Baamara et al, Scipost Phys 14, 050 (2023); Gessner Nat Commun 11, 3817 (2020), ...

Multiparameter estimation with three entangled atomic ensembles

entangled spinor BECs

quantum enhancement of four different modes

Conclusion and outlook

- Atom interferometry: from inertial sensing and geoscience to searches for new physics
- **de Broglie's wave-particle duality** determines fundamental precision limits of interferometry
- Today's best interferometers operate at this limit
- Entanglement can be harnessed to reduce quantum noise and improve precision
- Quantum metrology: an exciting research field where precision metrology meets quantum foundations

Quantum Optics and Atomic Physics

Positions available!

Gianni Buser

Manel Bosch

Haroon Saeed Madhav Saravanan Gian-Luca Schmid Tilman Zibold

Philipp Treutlein

Theory collaborators

Alice Sinatra Youcef Baamara

THE REAL PREFERENCE (accession) and the

