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Artificial vs natural

[Sastry et al., 2024]
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AI energy demands

[io-fund.com]

Performance scaling laws

[Sastry et al., 2024]

AI training is expected to drive the power demand to 402 TWh by 2030 (about the same demand of the
whole of France or Germany in 2023)
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Intelligence in embedded systems

Global passive sensors market (USD billion)

[gminsights.com]

More than 50 billion Internet of
Things (IoT) devices are expected
by 2030
Embedded devices with sensors
and/or actuators are the key
components of the IoT
Local “intelligence” is key to
reducing communication,
bandwidth and energy
consumption.

Clearly it is not possible to use conventional large-scale AI methods to endow IoT devices with
intelligence.
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Reducing energy in embedded systems

Conventional approaches
1 Make application specific (lose general

purpose flexibility)
2 Quantize parameters (reduce bit

precision)
3 Minimize resource usage (reduce

accuracy)

Novel approaches
1 Reduce data movement (implement

in-memory computing)
2 Reduce clock switching (use

asynchronous circuits)
3 Exploit all the physics of the devices (mix

analog and digital)

Novel computing paradigms: brain-like computation
Co-localize memory and computation (local processing, local state variables)
Maximize fine-grain parallelism (massively parallel arrays of memory and processing)
Use the “physics of computation” (exploit properties of computing substrate)

[Indiveri Sandamirskaya, IEEE Signal Processing Magazine, 2019; Indiveri Liu, Proceedings of IEEE, 2015]
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Principles of neural design

Animal brains
Slow, noisy and variable processing elements.
Local connectivity, small world networks.
Massively parallel distributed computation.
Closed-loop interaction with the environment.
Real-time spatio-temporal signal processing.
Continual always-on learning.

Time represents itself
The brain uses the time evolution of the physical
system to implement its computations. Neural circuits
compute by exploiting the natural time evolution of
their hardware substrate. [Sterling & Laughlin, 2017]

Existence proof

Bee brain specs
weight: 1 mg
volume: 1 mm3

# neurons: 960’000
energy/op: 10−15 J/spike
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system to implement its computations. Neural circuits
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Clock speed

Brains outperform faster computing
systems in many sensory processing
tasks at lower speeds, with less power.
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Neuromorphic Intelligence (according to me)

Neuroscience
Study the principles of
computation in animal
brains
Identify them at the
neural circuit level
Emulate the bio-physics
of neurons and
synapses using analog
electronic circuits
Validate/invalidate
hypotheses of neural
computation
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Neuromorphic Intelligence (according to me)

Electronics
Include novel devices
and emerging memory
technologies
Exploit (all) the physics
of these nanoscale
devices
Integrate CMOS and
memristive devices
together
Engineer efficient
“in-memory computing”
architectures
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Neuromorphic Intelligence (according to me)

Computing
Implement “neural
processing” systems in
custom ASICS
Integrate processors
with sensors and
actuators
Apply them to
closed-loop sensory
processing tasks
Develop cognitive
agents that produce
autonomous behavior.
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Neuromorphic Intelligence (co-design)

Neuroscience
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computation in animal
brains
Identify them at the
neural circuit level
Emulate the bio-physics
of neurons and
synapses using analog
electronic circuits
Validate/invalidate
hypotheses of neural
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Mixed-signal neuromorphic chips
Spiking inputs

Homeostatic adaptation

Spiking output

Synapse and 
learning block

Soma block 

Synaptic 
scaling block

Spiking neural networks (SNNs)
Analog subthreshold circuits.
Slow temporal, non-linear dynamics.
Massively parallel operation.
Compatible with memristive devices
Inhomogeneous, imprecise, and noisy.

Fast asynchronous digital circuits for routing spikes.
Reprogrammable network topology
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Spiking neuron circuits
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[Brette and Gerstner, 2005, Rubino et al., IEEE TCAS, 2020]
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Robust computation with inhomogeneous devices

Device mismatch effects
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How to cope with mismatch?
Use populations of neurons and
average over space and time
Employ negative feedback, adaptation,
and learning mechanisms

Choosing bit resolution

Coefficient of variation and Equivalent Number of Bits (ENOB)

[Zendrikov et al., 2023]
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High accuracy with high variability

Ensemble learning techniques exploit variability of inhomogeneous synapses.

On-line bagging techniques require variability
AdaBoost theorem: 1−error(Hfinal)≥ 1 − e−2𝛾2N [Freund and Schapire, 1997]
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Biologically plausible learning rule

Features
Compatible with “biological” and “electronic”
computing substrate
Based on latest dendritic multi-compartment models
Exploits properties of multiple inhibitory cell types
Makes use of population coding and dynamics
Implements a “stop learning” mechanism to
automatically switch between training and inference

Design team (FDSOI 22 nm, 2024)

Cortical motif
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Circuit operating principle

Spiking inputs arrive from both top-down pathways (context,
attention, prediction signals) and bottom-up pathways (sensory
signals).

An E-I balance maintains the population in a proper
operating range at all times.
During training, teacher signals reach the soma and
change plastic weights
During inference, SST inhibitory cells block top-down
inputs, the neurons respond only to bottom-up inputs with
lower firing rates, and synaptic weights “stop learning”.
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Circuit blocks and functions

Ia = [IT − ISST ]+

Ib = (Iin + IPYR − IPV )

Iin =

∫ ∑
i

wi𝛼 (t − 𝛿(ti)) dt

YPYR =𝜎 (Ia + Ib)

𝜃 =

∫
YPYRdt

Δwup = 𝜂(Ia − Ib)𝜎LTP if Ia ≥ Ib
Δwdn = 𝜂(Ia − Ib)𝜎LTD if Ia < Ib

𝜎LTP =

{
1 if 𝜃LTP− < 𝜃 < 𝜃LTP+

0 otherwise

𝜎LTD =

{
1 if 𝜃LTD− < 𝜃 < 𝜃LTD+

0 otherwise
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Binary classification: changing only relevant weights

Py
r A

Py
r B

A B

Synaptic weight

SPICE circuit simulations of two neurons
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Binary classification: changing only relevant weights
Py

r A
Py

r B

A B

Synaptic weight

NEST SW simulations at full population level (with mismatch)
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Robust spike-based learning mechanisms
There are many hardware-friendly spike-driven learning
algorithms that (go beyond STDP).
W. Senn, S. Fusi, N. Brunel, S. Sheik, E. Neftci, R. Zecchina, M. Memmesheimer, etc.

All rule have the following requirements:
Redundancy (population codes)
Bi-stable or multi-stable weights
Variability and heterogeneity
Analog, continuous-time state variables

0.0

θl
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,θl

down

θh
downθh

up

θ
v

θ
x

0.1 0.2 0.3 0.4

α

β

Calcium variable C(t)

Postsynaptic membrane potential V
mem
(t)

Synaptic state X(t)

Presynaptic spikes

a
b

Many mixed-signal hardware implementations have been demonstrated:

Supervised learning, mean rates
Unsupervised learning, precise spike-timing
Hopfield/attractor networks

Reservoir computing, liquid state and
perceptron
Ensemble learning (random forest,
bagging)

[Khacef et al., 2023]
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Applications

Edge intelligence
Mixed-signal neuromorphic systems are optimally suited for extreme-edge computing
applications, which require resource constrained electronic systems. They are ideal for always-on
in-sensor and in-memory computing applications that need to perform closed-loop interactions
the environment, in real-time.

Example: wearables and health monitoring
Neuromorphic CPG for adaptive pace-makers
[Abu-Hassan et al., 2019]

ECG anomaly detection [Bauer et al., 2019,Corradi et al., 2019]

EMG signal classification [Donati et al., 2019,Ma et al, 2020]

High-Frequency Oscillation (HFO) detection
[Sharifhazileh et al., 2021,Burelo et al., 2022]

Neuromorphic Heart Rate Monitors [Carpegna et al., 2024]
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Conclusions

Conventional AI increasing power requirements are
unsustainable.
New emerging memory technologies will benefit from
massively parallel processing architectures.
Neuroscience and machine learning are uncovering
powerful and robust neural processing methods.
Hardware implementations of spiking neural networks
and sparse event-based sensory-processing systems
are starting to show their advantages.
This is the perfect time to follow the “neuromorphic
intelligence” approach for starting a hardware
revolution.
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intelligence” approach for starting a hardware
revolution.
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The end

Thank you for your attention
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Neural computational primitives

In addition to using populations of neurons and
use learning and plasticity to improve
robustness of neural processing, it is useful to
identify and adopt basic building blocks that
implement key principles of computation.

Attractor networks
E-I balanced networks
Winner-Take-All networks
Relational networks
Coupled oscillators
Neural State Machines

see also poster by Maryada et al.
(Calcium-based dendritic plasticity)
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Applications

Edge intelligence
Mixed-signal neuromorphic systems are optimally suited for extreme-edge computing
applications, which require resource constrained electronic systems. They are ideal for always-on
in-sensor and in-memory computing applications that need to closed-loop interactions the
environment, in real-time.

Example: wearables and health monitoring
Neuromorphic CPG for adaptive pace-makers
[Abu-Hassan et al., 2019]

ECG anomaly detection [Bauer et al., 2019,Corradi et al., 2019]

EMG signal classification [Donati et al., 2019,Ma et al, 2020]

High-Frequency Oscillation (HFO) detection
[Sharifhazileh et al., 2021,Burelo et al., 2022]

Neuromorphic Heart Rate Monitors [Carpegna et al., 2024]
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Neural state machines and slow monotonic changes

Giacomo Indiveri (INI) Neuromorphic Intelligence June 3, 2024 31 / 26



Neural state machines and slow monotonic changes
Detecting “agitation states” by monitoring monotonic
increases in heart rates, over long-time periods.
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Neural state machines and slow monotonic changes

[Carpegna et al., 2024]
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Neuromorphic vs conventional processors

Pros
Low-power (< 1 mW)
Low latency
. . .

What are they good for?
Closed-loop sensory-motor processing
Multi-modal sensory fusion
Always-on on-line learning

Cons
High area
High variability, noisy
Low(er) accuracy

What are they bad at?
High precision number crunching
High accuracy pattern recognition
Batch processing of large data sets

Open challenges
How to obtain robust and reliable
computation using a noisy and
heterogeneous computing substrate.

How to program networks of spiking
neurons (hint: compose computational
primitives and use learning).
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Why spikes?

Background
We are building physical, real-time, signal processing systems for real-world sensory data.

Requirements
1 Robust communication of analog signals across long distances through noisy channels.
2 Local processing, multi-core architectures and distributed computing.
3 Low power and low-latency.

Optimal solution for communication and computation
The optimal method that minimizes bandwidth and power consumption for achieving this
goal, under these constraints, is pulse-frequency modulation. [A. Mortara et al., 1995, K. Boahen, 1998]

“Counter to intuition, computing with spikes can be extremely efficient on neuromorphic
hardware even when the problem being solved is mathematically formulated in terms of
activity rates.” [M. Davies, Intel, 2019]
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Why analog? Why slow?

Advantages
Compute through the dynamics of the circuits
No need to “count time”: avoid use of clock trees
Avoid large DAC/ADC overhead
Exploit the full potential of memristors

▶ Exploit intrinsic non-linearities [Brivio et al., 2021]

▶ Exploit intrinsic stochasticity [Gaba et al., 2013, Payvand et al., 2018]

Disadvantages (?)
Noisy =⇒ average across multiple neurons (exploit
population coding and heterogeneity)
Large area requirements =⇒ employ memristive
devices and 3D VLSI (exploit low power)

PCM cross-bar array [Source: IBM]

“Dendrocentric learning for synthetic intelligence” [Boahen, 2022]
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Synapse circuits

Vsyn

Vτ  Csyn

 Isyn

 Iτ

Ig

   

 Iw 

Vw 

[Bartolozzi, Indiveri, NECO 2007]

𝜏
d
dt

Isyn + Isyn =
IgIw
I𝜏

𝜏 =
CUT

𝜅I𝜏
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Real and silicon neurons
Also real neurons are diverse and inhomogeneous
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Reliable dynamics with cross-homeostatic plasticity

Balanced HW E-I networks

Pyramidal (Pyr)Parvalbumin (PV)
Core 1 Core 2

Maryada
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Reliable dynamics with cross-homeostatic plasticity

Balanced HW E-I networks

Pyramidal (Pyr)Parvalbumin (PV)
Core 1 Core 2

Cross-homeostatic plasticity induced stability

[Maryada et al., 2023]
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Spike-based backprop approximations

Local learning rules
Fusi et al. 2000
Brader et al. 2007
Urbanczik, Senn 2014
Baldassi et al. 2016
Neftci et al. 2017
Sacramento et al. 2018
Bellec et al. 2019
Zenke, Vogels 2021
Siddique et al. 2023
. . .

BB

S

A

P
I

Read-out Teacher

Sensory
input

R

Current excitatory  
Conductance excitatory  

Current inhibitory

L D

Pattern
Pattern + teacher signal 
Deviatory pattern

[Cartiglia et al., AICAS 2019]
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Ensemble learning techniques

Ensemble and stochastic learning can exploit variability of inhomogeneous synapses.

On-line bagging techniques
AdaBoost theorem: 1−error(Hfinal)≥ 1 − e−2𝛾2N [Y. Freund And R. E. Schapire, 1995]
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Outline

6 On-line sensory processing applications

7 Conclusions
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Application examples: extreme edge computing

Zebra-finch “Bird’s Own Song” classification [Corradi et al., 2015]

Closed-loop bidirectional brain machine interfaces with in rats and cell-cultures [Boi et al., 2016] [Serb et al. 2020]

Adaptive pace-maker with neuromorphic CPG network [Abu-Hassan et al., 2019]

On-line ECG anomaly detection [Bauer et al., 2019]

On-line classification of EMG signals [Donati et al., 2019]

Closed-loop obstacle avoidance on roving robot [Milde et al. 2017]

Closed-loop robot head position control with a neuromorphic processor [Zhao et al., 2020]

Neuromorphic pattern generation circuits for bioelectronic medicine [Donati et al., 2021]

Instantaneous stereo depth estimation of real-world stimuli with a stereo-vision setup [Risi et al., 2021]

On-line detection of vibration anomalies using balanced spiking neural networks [Dennler et al., 2021]

High-Frequency Oscillation (HFO) detection [Sharifhazileh, Burelo et al., 2021]
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High-Frequency Oscillations (HFO)

What is an HFO?
Spontaneous EEG events in the frequency range between 80 and 500 Hz consisting of at least
four oscillations that clearly stand out from the baseline.

[Fedele et al. 2017]
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Off-line HFO analysis

HFO are biomarkers for
epileptogenic brain tissue.

[Fedele et al., 2017]
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A neuromorphic HFO sensory-processing device

Giacomo Indiveri (INI) Neuromorphic Intelligence June 3, 2024 44 / 26



On-line detection of HFO
650 um

2
3

0
 u

m

Spike Rou�ng Network

Bias Generator

LNA

Filters

ADM

Chip Config

DYNAP-SE2 FPGA

Core1
256 Neurons

Core2
256 Neurons

Core3
256 Neurons

Core4
256 Neurons

FP
G

A

Neuromorphic 
Chip

FPGA

Analog
Input

Analog
Monit

a

b

c

d

LNA Filters ADM

Accuracy: 78 % (vs. 67%)
Power consumption: 614𝜇W

[Sharifhazileh, Burelo, et al., 2021]
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On-line HFO detection

Stand-alone sensor+processor
256 neurons, 512 synapses
“Backpropless” two layer network
One-bit weights
Inhomogeneous parameters
Matched time constants
Power consumption: 614𝜇W
Accuracy: 78% (vs. 67% from s-o-a)

[Sharifhazileh, Burelo et al., Nat. Comms 2021] < >
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Outline

6 On-line sensory processing applications

7 Conclusions
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Conclusions
Edge intelligence
We are now entering the era of neuromorphic intelligence in which dedicated cognitive “chiplets”
will be used to provide intelligence to a multitude of extreme edge-computing devices

Health monitoring
Wearable sensors

Environmental sensing
Industrial monitoring

Intelligent machine vision
Consumer applications
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The CapoCaccia Workshops for Neuromorphic Intelligence

http://capocaccia.cc/

Interdisciplinary, international, diverse
Morning lectures, afternoon hands-on work-groups
Active and lively discussions (no powerpoint)
Concrete results, establishment of long-term collaborations

Capo Caccia, Sardinia, Italy. April 28 - May 11, 2024
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Take home message for neuromorphic intelligence

Academic/basic research
Study real brains, start from small neural
circuits/systems
Take into account all properties of
neurons and synapses
Focus on fundamental problems (ignore
incremental benchmarks)
“There’s plenty of room at the bottom”
(large scale is not all)

Applied/industrial research
Choose a specific problem to solve that
is not being solved yet
Consider it’s requirements in it’s entirety,
from end to end
Be open to using the best of all possible
approaches (analog and digital)
Build the full ecosystem for your solution
(devices, software, users)

Early access:
Bottom-Up and Top-Down Approaches for the Design of Neuromorphic Processing Systems: Tradeoffs
and Synergies Between Natural and Artificial Intelligence, Frenkel and Indiveri, Proceedings IEEE, 2023.
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Exploiting memristive devices

A (Gilbert) normalizer memristive synapse
circuit

Iwpos Iwneg

Vb

Vsel

Vsel Vsel

M1 M2 M3 M4

M5

M6

V1 V4

VRD

Vtopp

Vbotp

VRD

Vtopn

Vbotn

Dpos Dneg

Ib
Vs Vs

Vc

Iwpos = Ib IM1
(IM1+IM4)

Iwneg = Ib IM4
(IM1+IM4)

[M. Nair et al., Nano Futures, 2017; Payvand et al., Faraday Discuss., 2019]
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Divisive non-linearity “squashes” distributions
and reduces mismatch effects

CV = 0.429

CV = 0.284
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Neuromorphic processors for sensory processing

[Indiveri et al., IEDM 2015]
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Real-time low-latency convolutional neural networks
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Real-time low-latency convolutional neural networks
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Robust computation via signal representations
←− Retinotopic and
orientation maps
representing the preference
of neurons in the visual
cortex for the location and
orientation of a stimulus on
the visual field.

Orientation tuning: −→
Non-human primate
response to moving bars
(top); Neuromorphic
processor response to
flashing bars (bottom)

Feature tuning via populations of
neurons

[Dayan & Abbott, 2005]
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[Chicca et al., 2007]
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On-chip learning implementation
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Neural oscillators and Central Pattern Generators

[R. Krause et al., 2021]

[E. Donati et al., 2021]
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Neural oscillators and Central Pattern Generators

[R. Krause et al., 2021]

[E. Donati et al., 2021]

Giacomo Indiveri (INI) Neuromorphic Intelligence June 3, 2024 56 / 26

https://neuro.embs.org/2021/
https://neuro.embs.org/2021/


Fixed point attractor networks on neuromorphic chips

Methods and tools:
Mean Field Theory
Effective Response
Function
Self consistency condition

𝜏
d
dt
𝜇 = −𝜇 +W𝜈in − 𝛽

𝜈out = Φ(𝜇(𝜈in), 𝜎)
𝜈out = 𝜈in = 𝜈

[M. Giulioni et al., 2012, M. Giulioni et al., 2015]
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Excitation-Inhibition balanced networks
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The canonical micro-circuit as a soft-WTA

Linear
behaviors

Non linear
behaviors

Analog gain Locus invariance Gain control by
common mode input

Selective amplification Signal restoration Multi-stability
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Soft Winner-Take-All networks

[Neftci et al., 2013]
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Soft Winner-Take-All networks
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Soft Winner-Take-All networks
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Soft Winner-Take-All drifting

[Zendrikov et al., 2023]
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Oscillators and WTA networks for solving CSPs
Binary variables V0,V1: V0≠V1
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In absence of external input (evidence), the network settles to the lowest energy state (all
constraints satisfied).

[Mostafa et al., 2015]
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Solving complex constraint satisfaction problems
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Can be applied to all Boolean satisfiability problems, such as graph coloring problem, SAT, etc.
[Mostafa et al., 2015]
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WTA networks and neural sampling

Exploiting the device mismatch in the neuron’s refractory period.
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[Bias et al., 2016]
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WTA networks and neural sampling
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Coupling multiple WTAs to process variables

[J. Zhao et al., 2020]
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Coupling multiple WTAs to process variables
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State dependent computation

Finite State Machines vs Neural State Machines
A finite-state machine (FSM) is a mathematical model of computation used to design both
computer programs and sequential logic circuits. It is conceived as an abstract machine that can
be in one of a finite number of states. [Wikipedia]

Initial

Accept

Recognizes regular expression B∗[AB∗A]∗

[Minsky, 1967]
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Neural State Machines: multi-chip implementation

Single WTA
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[R. Rutishauser & R.J. Douglas, 2009, R. Rutishauser et al., 2011, E. Neftci et al., 2013]
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Neural State Machines: experimental results

Vision
sensor

Multi-Neuron 
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Synthesizing neuromorphic cognitive system

[E. Neftci et al., 2013]
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Synthesizing neuromorphic cognitive systems
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Robust on-chip learning

Bi-stable synapses with STDP circuits
[Indiveri et al, 2006]

Spike-driven synaptic plasticity with stop-learning
[Mitra et al, 2009,Qiao et al., 2015]

Error-propagation with local learning
[Cartiglia et al., 2020]

Dendritic Hebbian synaptic plasticity with
stop-learning
[Rubino et al, 2023]
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CResPace: Adaptive pace-maker

Build an adaptive pacemaker that responds to physiological feedback in real time to recover heart
rate adaptation functionality.

(Elisa Donati, Renate Krause)

< >
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ECG anomaly detection using reservoir computing

[H. Jaeger, 2003] [W. Maass et al., 2002] [F. Bauer and D. Muir, SynSense]
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ECG anomaly detection using reservoir computing

[H. Jaeger, 2003] [W. Maass et al., 2002] [F. Bauer and D. Muir, SynSense]
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ECG anomaly detection using reservoir computing

Generic, single-led
ECG
Six different
anomaly types
One read-out unit
per anomaly

True positives rate (specificity): 91.3%
True negative rate (sensitivity): 97.6% [F. Bauer et al., 2019]
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ECG anomaly detection using reservoir computing
Mean neural event rate: 14.8·103/s
Mean synaptic event rate: 787.6·103/s
Energy per neural event: 100 pJ
Energy per synaptic event: 40 pJ
Mean power consumption: < 500𝜇W

< >
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On-line classification of EMG signals
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[Donati et al., 2019] < >
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Configuring neuromorphic processors for robot navigation

[R. Kreiser et al, Frontiers in Neuromorphic Eng., 2018]

[M. Milde et al., Frontiers in Neurorobotics, 2017]

[H. Blum et al., RSS, 2017]

[R. Kreiser et al., ISCAS, 2017]

[M. Milde et al., ISCAS 2017]

[R. Kreiser et al., IROS, 2018]

[S. Glatz et al., arXiv:1810.10801, 2018]
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Autonomous robot navigation

< >
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Application to robotic control

SNN Close 
enough?
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Jingyue Zhao

[Zhao et al. 2023 (in press, npj Robotics)] < >
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Application to robotic control
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[Zhao et al. 2023 (in press, npj Robotics)] < >
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On-line anomaly detection

Industrial Predictive Maintenance (PM)
Predictive Maintenance involves the health monitoring of a degrading system.
Vibration patterns yield valuable information about the health state of a running machine.
PM is typically applied to large industrial tasks, but could be useful for small appliances and
robots as well.
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On-line anomaly detection
Behavioral SNN simulation Validation with the DYNAP-SE chip

[Dennler et al., 2021] < >
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