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Physics and Education — A Journey into Plasma Physics

m What is a plasma?
m Plasma in nature
m Plasma in technology

m Conclusions
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What is a Plasma? °

A plasma is a reactive, (partly) ionized medium (a gas)
showing collective behavior that can be generated by supply of energy.
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Plasma in the Early Universe
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The universe is hot enough to ionize any atoms formed

yielding electrons, positrons, protons, light nuclei, and photons.

https://pressbooks.online.ucf.edu/osuniversityphysics3/chapter/evolution-of-the-early-universe/
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The universe cools below
60’000 K and atoms form.
Photons do not interact
strongly with neutral
atoms, so they “decouple”
from atoms constituting
the cosmic microwave
background radiation.

— no plasma

— thermal plasma
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Plasma in the Universe - Star Formation °

Electron

® — thermal plasma

hydrogen (p) SRR deuterium (D) (y|e|d|ng fUSion)

— occurrence of gamma radiation
(at high energy around 1 MeV)

— 13.6 eV required to ionize
hydrogen (H) in the universe

— reionization

Sibylle Glnter, Max—PIan_ck-—Institut fur Plasmaphysik,
Garching/Greifswald

1eV=1602-10")
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Plasma in the Later Universe (until today)
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— electromagnetic plasma activation (not a thermal plasma)

http://burro.case.edu/Academics/Astr328/Notes/SFRhist/reionization.html
Dirk Hegemann, SPS Annual Meeting 2024, September 11th, 2024 slide 6/34




Plasma in the Universe — around Stars (our Sun) °

interstellar space

plasma with
n =~0.05cm-3 4 solar wind
e~ U,
(fully ionized) \ T /
T,~15-3 eV TN
e / \
E.~ 100 MeV . protons + electrons

(Galactic cosmic rays)

© NASA/JPL-CALTECH Nature Astronomy 2019
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Plasma in the Universe - around Planets (our Earth) °
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— solar wind causing plasma activation of Earth’s atmosphere
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Plasma on Earth - Auroras (Polar Lights) °
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Figure 1 — Predicted Sunspot Activity

Polar light (© freepik)

— the low pressure plasma follows Earth’s magnetic field lines
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Plasma on Earth - Lightning and Volcanic Eruptions

(nside clouds

ot Gallen 2025

0,-2°0
N, — 2°N
‘O +*N = "NO/*NO,

— formation of reactive oxygen and nitrogen species (RONS)
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Plasma on Earth - Fithess for Life?

Anoxygenic photosynthesis
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M.M. Cortese-Krott et al., Antioxidants Redox Signaling 27 (2017) 684
slide 11/34



Natural Plasma
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What Can We Learn from Plasmas in Nature? °

m  Thermal plasma by heating to (extremely) high temperatures
— plasma fusion (as in stars)

m  Non-thermal plasma by electromagnetic activation
— plasma at low temperatures
— electrical breakdown
— plasma physicochemistry

m Plasmas for technology at low (LP) and atmospheric pressure (AP) enabled
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Electric Plasma Ignition — Paschen Curve °
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Plasma Processing at Non-Equilibrium Conditions °
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Plasma Ball - Example for ‘Cold’ Plasma at Low Pressure °

e.g. 95% neon and 5% xenon
at ~0.01 atm (1000 Pa)

The oscillating voltage changes
the electric field and the path of
the electrons, resulting in the
tentacles.

During this process, the inert gas
atoms are excited, resulting in
colorful light. The color of the
g light depends on the type of inert
. gas introduced into the ball by its
excitation energies.

electrode

Transformation from
battery voltage (5 V) to
2-5 kV at 20-40 kHz

Dirk Hegemann, SPS Annual Meeting 2024, September 11th, 2024

"When you touch it, the electricity
is looking for a ground path. You
are fairly conductive — your body is
mostly water. "
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Plasma Lighter — Example for ‘Hot’ Plasma at Atmosphere °

air at atmospheric pressure

Transformation from
battery voltage (3.7 V)
to >3 kV at ~15 kHz

Two electrodes are charged
by a potential difference of
>3'000 V to meet breakdown
in air.

The current flowing between
the electrodes ionizes the air
creating a plasma. The
electrical arc thus generated
can be used as a heat source
to get things on fire by
heating up to about
1'000°C.
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Non-Thermal Plasma - Plasma Physicochemistry °

plasma L>>Ap,, .

, : @ excitation + dissociation
quasi-neutrality ©,

o &

electron density n, = ion density n;

L, 0
E o °

electron temperature T, >> T, — energy uptake by molecules in plasma:
mass of ions m; >> m, 10s of eV
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Non-Thermal Plasma - Plasma Chemistry

Ozone synthesis _
plasma-chemical

Dirk Hegemann, SPS Annual Meeting 2024, September 11th, 2024

@

1 fz__'q"l"f+1"+fr_'f;;:=1‘ o >10% O, carbon dioxide conversion luabl Hirel
: o0 plasma /2 =p & methane vaitable products
5 i) (per Oy) o T —
‘E’“E 7|~ thermal H b
8 227’ '|_ decomposition|] 30, - 203
Ooor '!c'H : 'LH{ %J 'H'io AH N 15 eV
‘ SPECIF;C ENERGY (ev/032)
100? T T T T T T j
T g ;
c . F 2
2 0F 1
8 . F L o o o
s — electrical upcycling of climate gases
= 10°F thermal equilibrium’ 1 . . .
wF composition ! into valuable products using dry chemistry
o o0 20m s 000 50 e at non-equilibrium conditions

slide 19/34



Non-Thermal Plasma - Plasma Chemistry

Exhaust gas cleaning + air pollution control
Wall
exhaust / NO: O:@@ Mg o
K > 0, i»‘
gas syt {-{{ 3 -ﬂ Sk,
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. . I
Plasma module operating with 15 kV voltage,
60 kV/cm field strength, ~1 kW electrical power

Plasma module

L. Schiicke et al.,
J. Phys. D: Appl. Phys.
2022, 55, 21520
Industrially:
VOC: volatile organic compounds

80-90% removal of exhaust emissions
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Non-Thermal Plasma - Plasma Physics

plasma L>>Ap,,,
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mass of ions m; >> m, 10s of eV
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Non-Thermal Plasma - Plasma Deposition °

Hydrocarbons in plasma to deposit ’s
hard diamond-like coatings (DLC)  M2Ps
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b film- -forming speC|es

— control of gas phase and surface processes to adjust film properties
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DLC in Automotive Industry

Friction reduction for energy efficiency SCHAEFFLER
Coating Development at Surface Technology: Friction reduction for energy efficiency

Friction reduction in the valve train

' (2000 rpm, 80 °C)
l X Optimized tribological systems:
100 e - Surface: Coating & Oil.
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Surface - Coating System Tappet

» Half friction with Triondur® diamond like carbon coatings in the valve train.
» Continuous system optimization—> Modular system.

» 1% to 2% lower CO,-emission per vehicle.
» Annually 120 mn. Tappets = 300 thousand tons CO, savings annually.

Sep 8, 2020 C02-neutral mobility as a challenge and opportunity for plasma surface technology throughout the energy chain | Special PSE 2020 | Prof. Dr.-Ing. Tim Hosenfeldt All rights reserved to Schasffler Technologies AG & Co. kG, gg

in particular in case of grant of an IP right
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Plasma Processing at Non-Equilibrium Conditions °

substrate

plasma gas conversion plasma activation plasma sputtering
plasma polymer deposition plasma etching
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Impact of Plasma Technology — Semiconductors °

Growth of high quality GaN
films (3.4 eV direct bandgap)
on Al,O; (sapphire) using a
buffer layer made of AIN

— base layer for blue LEDs

single crystal GaN

Uniform growth

i«— Dislocation

Sound-zone

Semi-sound-zone (~150 nm)

Faulted-zone (~ 50 nm)

AIN (~50 nm)

substrate

Sapphire

— growth of single crystals introducing vertical gradients (non-equilibrium plasma)

Nobel Price
in Physics 2014

Isamu Akasaki,
Hiroshi Amano,
Shuji Nakamura

Wallplug efficiency

1960 1970

1980 1990 2000

PC-White:
phospor-converted
white light based on
efficient blue LEDs

2010 2020

http://www.nobelprize.org/nobel_prizes/physics/laureates/2014/advanced.html
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Moore's Law — Now and in the Future °

Moore's Law is the observation that the number of transistors on an
integrated circuit will double every two years with minimal rise in cost.
(Gordon Moore, Intel 1965)
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Moore's Law — Now and in the Future °

lithography plasma etch 1 plasma coating plasma etch2 plasmaetch 3 plasma etch 4
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next l l ' ! smaller structure
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Potential of Ultrathin Siloxane Films Replacing PFAS °

PFAS

Per- and polyfluoroalkyl substances have unique properties
in terms of water, oil and stain repellence. Due to human
health and environmental risks, however, the replacement of
PFAS became a pressing social challenge.

- Empa developed a plasma process to obtain
water repellent and fast drying fibers & textiles
— ultrathin glass-like hydrophobic layers cover
even elastic fibres.

Water repellence on 300 %

elongated elastic fiber - Roll-to-roll pilot-scale reactor demonstrates
(20x magpnification) . . T . . .
industrial feasibility enabling industrial transfer.

‘Empa "CILANDER
LOTHOS SWISS | TEXTILE | 1814

&»’ Pi|ot_sca|e p|asma reactor Materials Science and Technology FoTE—
i l (winding at ambient conditions)
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Potential of Ultrathin Siloxane Films Replacing PFAS

100 = 100 .
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Man-Made Plasma °
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Thermal Plasma - Plasma Fusion

Magnetic Confinement Fusion

?H

toroidal
plasma current

H

9 8 ‘He
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Inertial Confinement Fusion —
Laser-induced densification

plasma
shock wave

~100'000"000 K
~1'000 g cm?3
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Thermal Plasma - Plasma Fusion: ITER

“We put a sun in a thermos bottle”
Sabine Griffith, ITER, 10.08.2024

Dirk Hegemann, SPS Annual Meeting 2024, September 11th, 2024 slide 32/34



Conclusions °

Physics and Education — A Journey into Plasma Physics

m Plasma as ‘beautiful’ state of matter: luminous, unusual behavior
— triggering interest of students

m Plasma state ‘rules’ the universe: stars, nebula, jets, interstellar space
— thermally and electromagnetically activated plasma

m Plasma as 'hidden champion’: technical use of plasma in many important fields
— LP vs. AP (simple demo); plenty of examples for product manufacturing

m Plasma helping to solve urgent societal tasks: PFAS, air/water cleaning, energy
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Empa - The Place where Innovation Starts
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