

SPS Annual Meeting 2024 Zurich, September 9 - 13, 2024

Materials Science and Technology

Physics and Education A Journey into Plasma Physics

Dirk Hegemann

dirk.hegemann@empa.ch

Outline

Physics and Education – A Journey into Plasma Physics

- What is a plasma?
- Plasma in nature
- Plasma in technology
- Conclusions

What is a Plasma?

A plasma is a reactive, (partly) ionized medium (a gas) showing collective behavior that can be generated by supply of energy.

Plasma in the Early Universe

The universe cools below 60'000 K and atoms form. Photons do not interact strongly with neutral atoms, so they "decouple" from atoms constituting the cosmic microwave background radiation.

 \rightarrow no plasma

The universe is hot enough to ionize any atoms formed yielding electrons, positrons, protons, light nuclei, and photons.

 \rightarrow thermal plasma

https://pressbooks.online.ucf.edu/osuniversityphysics3/chapter/evolution-of-the-early-universe/

Plasma in the Universe – Star Formation

→ **thermal plasma** (yielding fusion)

→ occurrence of gamma radiation (at high energy around 1 MeV)

\rightarrow 13.6 eV required to ionize hydrogen (H) in the universe

\rightarrow reionization

Plasma in the Later Universe (until today)

\rightarrow electromagnetic plasma activation (not a thermal plasma)

http://burro.case.edu/Academics/Astr328/Notes/SFRhist/reionization.html

Plasma in the Universe – around Stars (our Sun)

© NASA/JPL-CALTECH

Dirk Hegemann, SPS Annual Meeting 2024, September 11th, 2024

Nature Astronomy 2019

slide 7/34

Plasma in the Universe – around Planets (our Earth)

\rightarrow solar wind causing plasma activation of Earth's atmosphere

Plasma on Earth – Auroras (Polar Lights)

→ collective behavior

Polar light (© freepik)

\rightarrow the low pressure plasma follows Earth's magnetic field lines

Plasma on Earth – Lightning and Volcanic Eruptions

\rightarrow formation of reactive oxygen and nitrogen species (RONS)

Plasma on Earth – Fitness for Life?

Combined oxygen production by cyanobacteria and primitive plants oxidized all the oceanic iron and sulfide, and around 600 million years ago, atmospheric O_2 began to increase to present-day levels.

Due to **RONS** by lightning and volcanic activity, organisms had to develop antioxidant strategies, increasing their **robustness** and **fitness for life**.

M.M. Cortese-Krott et al., Antioxidants Redox Signaling 27 (2017) 684

What Can We Learn from Plasmas in Nature?

- Thermal plasma by heating to (extremely) high temperatures
 → plasma fusion (as in stars)
- **Non-thermal plasma** by electromagnetic activation
 - \rightarrow plasma at low temperatures
 - → electrical breakdown
 - \rightarrow plasma physicochemistry

Plasmas for technology at low (LP) and atmospheric pressure (AP) enabled

Electric Plasma Ignition – Paschen Curve

Plasma Processing at Non-Equilibrium Conditions

slide 15/34

Plasma Ball – Example for 'Cold' Plasma at Low Pressure

e.g. 95% neon and 5% xenon at ~**0.01 atm** (1000 Pa)

Transformation from battery voltage (5 V) to **2-5 kV** at 20-40 kHz The oscillating voltage changes the electric field and the path of the electrons, resulting in the tentacles.

During this process, **the inert gas atoms are excited, resulting in colorful light.** The color of the light depends on the type of inert gas introduced into the ball by its excitation energies.

"When you touch it, the electricity is looking for a ground path. You are fairly conductive – your body is mostly water. "

Plasma Lighter – Example for 'Hot' Plasma at Atmosphere 🜍

air at atmospheric pressure

Transformation from battery voltage (3.7 V) to **>3 kV** at ~15 kHz Two electrodes are charged by a potential difference of >3'000 V to meet breakdown in air.

The current flowing between the electrodes ionizes the air creating a plasma. The electrical arc thus generated can be used as a heat source **to get things on fire by heating up to about 1'000°C.**

Non-Thermal Plasma – Plasma Physicochemistry $L > > \lambda_{Debye}$ plasma excitation + dissociation + quasi-neutrality Θ electron density n_{e} = ion density n_{i} (-)Θ Ē + (-) Θ \rightarrow energy uptake by molecules in plasma: electron temperature $T_e >> T_{aas}$ 10s of eV mass of ions $m_i >> m_{\rho}$

Non-Thermal Plasma – Plasma Chemistry

Ozone synthesis

→ electrical upcycling of climate gases into valuable products using dry chemistry at non-equilibrium conditions

Non-Thermal Plasma – Plasma Chemistry

Exhaust gas cleaning + air pollution control

Plasma module operating with 15 kV voltage, 60 kV/cm field strength, ~1 kW electrical power

Wall Polluted air D.H.O Plasma module L. Schücke et al., J. Phys. D: Appl. Phys. 2022, 55, 21520

Industrially: 80-90% removal of exhaust emissions

VOC: volatile organic compounds

Non-Thermal Plasma – Plasma Physics

Non-Thermal Plasma – Plasma Deposition

Hydrocarbons in plasma to deposit hard diamond-like coatings (DLC)

25

\rightarrow control of gas phase and surface processes to adjust film properties

DLC in Automotive Industry

Friction reduction for energy efficiency

Coating Development at Surface Technology: Friction reduction for energy efficiency

Dirk Hegemann, SPS Annual Meeting 2024, September 11th, 2024

SCHAEFFLER

Plasma Processing at Non-Equilibrium Conditions

Impact of Plasma Technology – Semiconductors

Growth of high quality GaN films (3.4 eV direct bandgap) on Al_2O_3 (sapphire) using a buffer layer made of AIN \rightarrow base layer for **blue LEDs**

→ growth of single crystals introducing vertical gradients (non-equilibrium plasma)

Nobel Price in Physics 2014 Isamu Akasaki, Hiroshi Amano,

Shuji Nakamura

PC-White:

phospor-converted white light based on efficient blue LEDs

http://www.nobelprize.org/nobel_prizes/physics/laureates/2014/advanced.html

Moore's Law – Now and in the Future

Moore's Law is the observation that the number of transistors on an integrated circuit will double every two years with minimal rise in cost. (Gordon Moore, Intel 1965)

Currently driven by Al and robotics

Moore's Law – Now and in the Future

Potential of Ultrathin Siloxane Films Replacing PFAS

Water repellence on 300% elongated elastic fiber (20x magnification)

Pilot-scale plasma reactor (winding at ambient conditions)

Dirk Hegemann, SPS Annual Meeting 2024, September 11th, 2024

PFAS

Per- and polyfluoroalkyl substances have unique properties in terms of water, oil and stain repellence. Due to human health and environmental risks, however, the replacement of PFAS became a pressing social challenge.

- → Empa developed a plasma process to obtain
 water repellent and fast drying fibers & textiles
 ultrathin glass-like hydrophobic layers cover
 even elastic fibres.
- → Roll-to-roll pilot-scale reactor demonstrates industrial feasibility enabling industrial transfer.

Potential of Ultrathin Siloxane Films Replacing PFAS

Dirk Hegemann, SPS Annual Meeting 2024, September 11th, 2024

Patent application filed 09.2023

Man-Made Plasma

Thermal Plasma – Plasma Fusion

Thermal Plasma – Plasma Fusion: ITER

"We put a sun in a thermos bottle" Sabine Griffith, ITER, 10.08.2024

Dirk Hegemann, SPS Annual Meeting 2024, September 11th, 2024

slide 32/34

Conclusions

Physics and Education – A Journey into Plasma Physics

- Plasma as 'beautiful' state of matter: luminous, unusual behavior
 → triggering interest of students
- Plasma state 'rules' the universe: stars, nebula, jets, interstellar space → thermally and electromagnetically activated plasma
- Plasma as 'hidden champion': technical use of plasma in many important fields
 → LP vs. AP (simple demo); plenty of examples for product manufacturing
- Plasma helping to solve urgent societal tasks: PFAS, air/water cleaning, energy

Empa – The Place where Innovation Starts

- Plasma & Coating Group
 - Dr. Dirk Hegemann dirk.hegemann@empa.ch

Funding

Schweizerische Eidgenossenschaft Confederation suisse Confederazione Svizzera Swiss Confederation Commission for Technology and Innovation CTI

Empa Materials Science and Technology

