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Outline
Physics and Education – A Journey into Plasma Physics

 What is a plasma?

 Plasma in nature

 Plasma in technology

 Conclusions
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What is a Plasma?

A plasma is a reactive, (partly) ionized medium (a gas)
showing collective behavior that can be generated by supply of energy.

partly ionized plasma
majority of reactive species 

(since Eion > Eexc)

fully ionized
plasma

Debye length

𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≫ 𝜆𝜆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =
𝜀𝜀0𝑘𝑘𝐵𝐵𝑇𝑇𝑒𝑒
𝑒𝑒2 𝑛𝑛𝑒𝑒

ne: electron density; Te: electron temperature 

λ

Add Electrical Energy
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Plasma in the Early Universe

https://pressbooks.online.ucf.edu/osuniversityphysics3/chapter/evolution-of-the-early-universe/

The universe is hot enough to ionize any atoms formed 
yielding electrons, positrons, protons, light nuclei, and photons.

The universe cools below 
60’000 K and atoms form. 
Photons do not interact 
strongly with neutral 
atoms, so they “decouple” 
from atoms constituting 
the cosmic microwave 
background radiation.

→ thermal plasma

→ no plasma
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Plasma in the Universe – Star Formation

hydrogen (p)

>3 mil. K
deuterium (D)

→ thermal plasma
(yielding fusion)

→ occurrence of gamma radiation
(at high energy around 1 MeV)

→ 13.6 eV required to ionize
 hydrogen (H) in the universe

→ reionization

1 eV ≡ 1.602 ∙ 10–19 J 

Sibylle Günter, Max-Planck-Institut für Plasmaphysik, 
Garching/Greifswald
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Plasma in the Later Universe (until today)

http://burro.case.edu/Academics/Astr328/Notes/SFRhist/reionization.html

courtesy NASA/ESA
3’000 K 2.7 K60’000 K 30 K

→ electromagnetic plasma activation  (not a thermal plasma)
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Plasma in the Universe – around Stars (our Sun)

heliopause

solar wind

interstellar space

ne ≈0.002 cm-3

Te ≈3-5 eV

plasma with

(weakly ionized)
ne ≈0.05 cm-3

Te ≈1.5-3 eV

plasma with

(fully ionized)

heliosheath

attracting matter
~10-17 mbar
(~0.1 cm-3)

Nature Astronomy 2019

Ei ≈ 100 keV
(‘low-energy’ ions)

Ei ≈ 100 MeV
(Galactic cosmic rays)

protons + electrons

© NASA/JPL-CALTECH
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Plasma in the Universe – around Planets (our Earth)

ne ≈ 10 cm-3

→ solar wind causing plasma activation of Earth’s atmosphere

© Norwegian Center for Space 
Weather (NOSWE)

~15 mil. K
~150 g cm-3
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Plasma on Earth – Auroras (Polar Lights)

→ the low pressure plasma follows Earth’s magnetic field lines

Polar light (© freepik)

→ collective behavior
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Plasma on Earth – Lightning and Volcanic Eruptions

→ formation of reactive oxygen and nitrogen species (RONS)

St.Gallen 2023 

O2 +e– → •O2
–

H2O – e– → •OH → H2O2

O2 → 2 •O

N2 → 2 •N

•O + •N → •NO / •NOx

ice crystals (+)

ice pellets (–)

earth (+)

inside clouds
O2 → O2

*
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Plasma on Earth – Fitness for Life?

RONS

Combined oxygen production by 
cyanobacteria and primitive plants 
oxidized all the oceanic iron and 
sulfide, and around 600 million 
years ago, atmospheric O2 began to 
increase to present-day levels.
 
Due to RONS by lightning and 
volcanic activity, organisms had 
to develop antioxidant 
strategies, increasing their 
robustness and fitness for life.

M.M. Cortese-Krott et al., Antioxidants Redox Signaling 27 (2017) 684
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Natural Plasma
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What Can We Learn from Plasmas in Nature?

 Thermal plasma by heating to (extremely) high temperatures
→ plasma fusion (as in stars)

 Non-thermal plasma by electromagnetic activation
→ plasma at low temperatures
→ electrical breakdown
→ plasma physicochemistry

 Plasmas for technology at low (LP) and atmospheric pressure (AP) enabled
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Electric Plasma Ignition – Paschen Curve

10 Pa, 6 cm

AP
0.2 cm

VB : breakdown voltage
p : pressure; d : electrode gap 
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LP

Te

Tgas

‘hot electrons’ionization 
degree
~10-5

Te : electron temperature
Tgas : gas temperature

short residence time
(transient)  

AP

thermal

Plasma Processing at Non-Equilibrium Conditions
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Plasma Ball – Example for ‘Cold’ Plasma at Low Pressure

The oscillating voltage changes 
the electric field and the path of 
the electrons, resulting in the 
tentacles.

During this process, the inert gas 
atoms are excited, resulting in 
colorful light. The color of the 
light depends on the type of inert 
gas introduced into the ball by its 
excitation energies.

Transformation from 
battery voltage (5 V) to 
2-5 kV at 20-40 kHz

e.g. 95% neon and 5% xenon
at ~0.01 atm (1000 Pa)

"When you touch it, the electricity 
is looking for a ground path. You 
are fairly conductive – your body is 
mostly water. "

e–e–e–

e–

electrode 
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Plasma Lighter – Example for ‘Hot’ Plasma at Atmosphere

Two electrodes are charged 
by a potential difference of 
>3’000 V to meet breakdown 
in air.
The current flowing between 
the electrodes ionizes the air 
creating a plasma. The 
electrical arc thus generated 
can be used as a heat source 
to get things on fire by 
heating up to about 
1’000°C.

Transformation from 
battery voltage (3.7 V) 
to >3 kV at ~15 kHz

air at atmospheric pressure
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Non-Thermal Plasma – Plasma Physicochemistry

plasma

- +

-
+

-
+

-

+

- +

L>>λDebye

-+

+
-

𝐸𝐸

→ energy uptake by molecules in plasma:
10s of eV

excitation + dissociation
quasi-neutrality

electron density ne = ion density ni

electron temperature Te >> Tgas

mass of ions mi >> me
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Non-Thermal Plasma – Plasma Chemistry

→ electrical upcycling of climate gases
  into valuable products using dry chemistry
  at non-equilibrium conditions

Ozone synthesis

thermal 
decomposition

O2 plasma

thermal equilibrium 
composition

>10% O3

(per O2)

3O2 → 2O3
∆H ≈ 1.5 eV
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Non-Thermal Plasma – Plasma Chemistry

Exhaust gas cleaning + air pollution control

www.envisolve.comPlasma module operating with 15 kV voltage,
60 kV/cm field strength, ~1 kW electrical power

Industrially:
80-90% removal of exhaust emissions

air activated
     air

exhaust
    gas

Plasma module L. Schücke et al.,
J. Phys. D: Appl. Phys. 
2022, 55, 21520

VOC : volatile organic compounds

AP plasma
module
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Non-Thermal Plasma – Plasma Physics

plasma

- +

-
+

-
+

-

+

- + sheath

– – – – –– –
–

––––––––

dsh>λDebye

L>>λDebye

Vs

-+

+

material
Γi = Γe

energy flux Ei · Γi-

electron temperature Te >> Tgas

mass of ions mi >> me

→ energy deposited at material’s surface:
10s of eV

𝐸𝐸
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Non-Thermal Plasma – Plasma Deposition

→ control of gas phase and surface processes to adjust film properties

plasma physics (surface)

plasma chemistry

Hydrocarbons in plasma to deposit 
hard diamond-like coatings (DLC)

S. Peter et al. J. Appl. Phys. 102 (2007) 053304 

film-forming species

LP plasma
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DLC in Automotive Industry

2010 20202015

19951980
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Plasma Processing at Non-Equilibrium Conditions

plasma polymer deposition
plasma activation

plasma etching
plasma sputtering

Reactive Gas
(O2, CO2, N2…)

O, N2
+…

Molecules
(CO2, CH4, C2H4, HMDSO, C4F8…)

radicals

target

atoms

substrate

Inert Gas
(Ar, He…)

ions

~100s eV

~10 eV
~10s eV

~10 eV

~10s eV

plasma gas conversion
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Impact of Plasma Technology – Semiconductors

Nobel Price
in Physics 2014
Isamu Akasaki,
Hiroshi Amano,
Shuji Nakamura

PC-White:
phospor-converted
white light based on
efficient blue LEDs

Growth of high quality GaN
films (3.4 eV direct bandgap)
on Al2O3 (sapphire) using a
buffer layer made of AlN
→ base layer for blue LEDs

single crystal GaN

substrate

http://www.nobelprize.org/nobel_prizes/physics/laureates/2014/advanced.html

→ growth of single crystals introducing vertical gradients (non-equilibrium plasma)
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Moore’s Law – Now and in the Future

2024

www.intel.com
Currently 
driven by AI 
and robotics

Moore’s Law is the observation that the number of transistors on an 
integrated circuit will double every two years with minimal rise in cost.
(Gordon Moore, Intel 1965)
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Moore’s Law – Now and in the Future
lithography plasma etch 1 plasma coating plasma etch 2 plasma etch 3 plasma etch 4

Si wafer

mask
SiO2

SiO2

Si-Wafer

plasma coatings plasma etching 1 plasma etching 2

smaller structure 
sizes and
3D architecture

next 
generation
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Potential of Ultrathin Siloxane Films Replacing PFAS
PFAS
Per- and polyfluoroalkyl substances have unique properties 
in terms of water, oil and stain repellence. Due to human 
health and environmental risks, however, the replacement of 
PFAS became a pressing social challenge. 

Water repellence on 300 % 
elongated elastic fiber

(20x magnification)

Pilot-scale plasma reactor
(winding at ambient conditions)

 Empa developed a plasma process to obtain 
water repellent and fast drying fibers & textiles 
– ultrathin glass-like hydrophobic layers cover 
even elastic fibres.

 Roll-to-roll pilot-scale reactor demonstrates 
industrial feasibility enabling industrial transfer.
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Potential of Ultrathin Siloxane Films Replacing PFAS

plasma-coated untreated

initial
5x washed

Patent application filed 09.2023

enhanced 
capillary 
depression + 
rapid drying 
properties +
less chemicals, 
high durability

> μm
~30 nm

C6

plasma

C0
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Man-Made Plasma

100         1’000         104 105 106 107 108 109 1010 1011

temperature of charge carriers (K)

1035

1030

1025

1020

1015

1010

105

1

de
ns

ity
 o

f c
ha

rg
e 

ca
rri

er
s 

(p
er

 m
3 )

gas 
discharge

aurora

neutral 
particles

magnetic 
fusion

inertial 
fusion

nebula

arc

room temperature

standard pressure
lightning

ionosphere

astrophysical
plasma jets

core 
of star

interstellar
room

solar 
wind

solar 
coronafire

non-thermal plasma
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1H

4He

4He

4He

11B

1H

2H 3H

4He

toroidal 
plasma current

Magnetic Confinement Fusion Inertial Confinement Fusion –
Laser-induced densification

plasma 
shock waveproton

neutron

Thermal Plasma – Plasma Fusion

150’000’000 K

~100’000’000 K
~1’000 g cm-3

~0.1 mm~10 m

0.1-1 Pa
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Thermal Plasma – Plasma Fusion: ITER
“We put a sun in a thermos bottle”
Sabine Griffith, ITER, 10.08.2024

2021
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Conclusions
Physics and Education – A Journey into Plasma Physics

 Plasma as ‘beautiful’ state of matter: luminous, unusual behavior
→ triggering interest of students

 Plasma state ‘rules’ the universe: stars, nebula, jets, interstellar space
→ thermally and electromagnetically activated plasma 

 Plasma as ‘hidden champion’: technical use of plasma in many important fields
→ LP vs. AP (simple demo); plenty of examples for product manufacturing

 Plasma helping to solve urgent societal tasks: PFAS, air/water cleaning, energy
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 Plasma & Coating Group

 Funding

Empa – The Place where Innovation Starts

Dr. Dirk Hegemann
dirk.hegemann@empa.ch Thanks for your Attention!
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