

Materials Science and Technology

From Materials to Devices

The importance of physics in material science & technology for sustainable energy applications

Dr. Lorenz Herrmann Head of Department Advanced Materials & Surfaces SPS Annual meeting 2024-09-13, ETHZ

- Introduction:
 - Concept «Materials to Devices»
 - Physics in Energy-related Materials Science at Empa
- Example 1: High Efficiency CIGS solar cells
- Example 2: Solid state thin film batteries
- Example 3: Quantum heat engines as thermoelectric generators
- Summary

Introduction: From Materials to Devices...

Energy supply, conversion and storage

Photovoltaics Batteries Power to X Seasonal thermal storage

Supply & demand balancing Sector coupling Resilient energy system Demonstrators & case studies

Energy Demand

1

11

Energy-efficient materials & processes Circular construction & retrofitting Building monitoring & operation E- and H_2 -mobility, synthetic fuels

NEST

Energy Hub

111

move

High Efficiency CIGS Cu(In,Ga)Se₂ solar cells

~3.5 µm

Generations of solar cells

1st Generation: Silicon wafer-based

> Wafer thickness: 200µm
> Rigid
> Heavy

55 years old(95% market share)

2nd Generation: **Thin-films: CdTe, CIGS,..**

- <3µm but still heavy
- Large area deposition
- Monolithic integration

Flexible

R-2-R

Light-weight

3rd Generation: new concepts such as Bifacial, tandem,

chweizerische Eidgenossenschaft

onfédération suisse

Confederazione Svizzera Confederaziun svizra

Can we bring up efficiency even further?

High-EFFICIENCY flexible solar cells @ Empa

Approach: absorber alloying

- Tiny amounts of silver in CIGS
- Improved PV performance: Power conversion efficiency >22%
- →Improved Process tolerance
- →Low temperature process enabling polymer or other delicate substrates

Idea: Bifacial CIGS solar cells

What about bifacial CIGS ?

Our approach

 Replace metal Mo with transparent ITO (possible due to low process temperature of Ag alloyed material!)

Can we bring up efficiency even further?

- > **Breakthrough**: devices work well!
- Romain Carron Yaroslav Romanyuk

Yang et al., 2023, *Nature Energy*, *8*, 40-51. https://doi.org/10.1038/s41560-022-01157-9

Phycisal limits: low photocurrent under rear illumination

Rear illumination: missing about half photocurrent

corrected for absorption and reflection

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra State Secretariat for Education, Research and Innovation SERI Yang et al., 2023, *Nature Energy*, *8*, 40-51. https://doi.org/10.1038/s41560-022-01157-9

Bandgap gradient

Issue: big bandgap at rear interface

- Low electron density, low recomb.
- Bad efficiency to create backside e-h pairs

Outlook: absorber without gradient/ charge selective contacts

Thin-film batteries (TFB)

TFB is a miniature solid-state battery

Ion diffusion path determines charging rate

Li-ion battery

Current collector

high energy

low rate

Thin-film battery

high rate

Monolithic multi-cell thin-film battery!?

high rate

very low energy

Porous cathode

Thin-film battery fabrication line at Empa

Experimental proof of concept: the first tandem stacked thin-film battery

Benchmarking with solid-state batteries

Empa spin-off BTRY AG

"A sustainable, reliable solid-state Li-ion battery that can be charged in one minute."

Quantum heat engines as thermoelectric generators

Generating electricity from (waste) heat?

Carnot cycle is upper thermodynamic limit of all heat engines, but no power output is produced

Classical (cyclic) heat engines reach the Curzon-Ahlborn limit of maximum efficiency at maximum power output

Thermoelectrics do not reach Curzon Ahlborn limit so far!

Can we make thermoelectrics more efficient by using quantum heat engines?

PHE (Particle exchange Heat Engine) Design with electrons

Graphene nanoribbons

A versatile material platform for quantum technologies

Gabriela Borin-Barin Roman Fasel **Paradigm shift**: "one for all"

Mickael Perrin Michel Calame

Toward room temperature quantum devices

Coulomb diamonds visible up to 250K

Mickal Perrin, ETHZ, Empa, ERC starting grant

- Physics and chemistry are the base of interdisciplinary, energyrelated material science
- Bifacial Solar Cells as way to increase efficieny
- Thin-film batteries strive for high power & energy density at same time
- Exploratory new methods like quantum heat engines are at the horizon as a new generation of thermoelectric generators.

Empa – The Place where Innovation Starts

+41 58 765 11 11 contact@empa.ch empa.ch f ♥ ◎ in X □

