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Introduction:
= Concept «Materials to Devices»
= Physics in Energy-related Materials Science at Empa

Example 1: High Efficiency CIGS solar cells

Example 2: Solid state thin film batteries

Example 3: Quantum heat engines as thermoelectric generators

Summary
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Generations of solar cells °

3rd Generation:
new concepts
such as

Bifacial, tandem,

2nd Generation:
Thin-films: CdTe, CIGS,..

1st Generation:
Silicon wafer

L b A a0 2 28 B 2%

Rigid substrate

» Absorber thickness:
<3um but still heavy

» Large area deposition
» Monolithic integration

» Wafer thickness:
> Rigid
» Heavy

» 55 years old

(95% market share » 20 years old (5% market share)



High-EFFICIENCY flexible solar cells @ Empa o7

Approach: absorber alloying
= Tiny amounts of silver in CIGS 20 ¢

—>Improved PV performance: 18 | x

Power conversion efficiency >22% )
—>Improved Process tolerance E; 16 }
—>Low temperature process enabling polymer or other .E
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Can we bring up efficiency even further?

Yang et al, 2021, Solar RRL, 5(5), 2100108
State Secretariat for Education, httpS://dOI.Org/lo.1002/50|r.202100108
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Idea: Bifacial CIGS solar cells

Rear cover glass
Bifacial solar cells

Front cover glass
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What about bifacial CIGS ?

Jounsuale

Our approach

= Replace metal Mo with transparent ITO
(possible due to low process temperature of
Ag alloyed material!)

Rear power conversion efficiency (%)
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» Breakthrough: devices work well!

» Romain Carron - Yaroslav Romanyuk

Can we bring up efficiency even further?

Yang et al., 2023, Nature Energy, 8, 40-51.
https://doi.org/10.1038/s41560-022-01157-9



Phycisal limits: low photocurrent under rear illumination °
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Rear illumination: missing about half photocurrent

State Secretariat for Education,
Research and Innovation SERI
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Yang et al., 2023, Nature Energy, 8, 40-51.
https://doi.org/10.1038/s41560-022-01157-9



Bandgap gradient
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Issue: big bandgap at rear interface
= Low electron density, low recomb.
= Bad efficiency to create backside e-h pairs charge selective contacts

Outlook: absorber without gradient/



Thin-film batteries (TFB)
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TFB is a miniature solid-state battery

Li-ion battery

Cu foil -

~200 pm

Cathode

Al foil

Image courtesy: Xinyao Li

Solid state battery
(SSB)

..........

.....

Li-metal anode

1-5 um

— Solid-state electrolyte

Thin-film battery

(TFB

)

------- Solid-state electrolyte
—-= Cathode

Metal contact



Porous cathode

lon diffusion path determines charging rate

Li-ion battery
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Current collector

high energy
low rate

Thin-film battery

Monolithic multi-cell
thin-film battery!?
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Thin-film battery fabrication line at Empa

ALD Magnetron sputtering Wet glovebox Dry glovebox Thermal evaporator

FLA



Experimental proof of concept:
the first tandem stacked thin-film battery
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Futscher et al., Comm Chem. 6 (2023) 110



Benchmarking with solid-state batteries
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Futscher et al., Comm Chem. 6 (2023) 110
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Solid-State Batteries (SoA) *
* S. Randau et al. Nat Energy 5, 259-270 (2020)
—8—-This work (experimental)
LG 18650 HG2L 3000 mAh
This work (NMC811, modeled)

—o—This work (LCO, modeled)

Enabling high power and high
Energy in one device!




Empa spin-off BTRY AG

“A sustainable, reliable solid-state Li-ion battery that can be charged in one minute.”

Li-ion battery BTRY Supercapacitor
BTRY
» Rate
Energy < M. Futscher & A. Aribia
4 _ )
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Power generation efficiency

Generating electricity from (waste) heat?

He et al. Science 2017
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Curzon-
Ahlborn
limit

Carnot cycle is upper
thermodynamic limit of all heat
engines, but no power output is

produced

Classical (cyclic) heat engines
reach the Curzon-Ahlborn limit of
maximum efficiency at maximum

power output

Thermoelectrics do not reach
Curzon Ahlborn limit so far!

Can we make thermoelectrics more efficient by using quantum heat engines?




PHE (Particle exchange Heat Engine) Design with electrons
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Question: Where is the Curzon-Ahlborn
«Quantum dot» limit for maximum power output?




Experimental quantum heat engine

Josefsson et al. Nat. Nano. 2018
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However: This device only operates at temperatures below 1K, level

splitting in semiconducting quantum dots is small.

Question: Can we bring up the Quantum Engines to room temperature?



Graphene nanoribbons

A versatile material platform for quantum technologies

Devices

Interconnects
Armchair edges

Materials

Spintronics
Spin-polarized edges

Quantum communication
Single-photon emitter

Variable gap semiconductor - metal Engineered spin conduction

Itiple

gates Quantum storage

Topologically-protected states
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Quantum computing
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Gabriela Borin-Barin Paradigm shift: “one for all” Mickael Perrin
Roman Fasel Michel Calame




Toward room temperature quantum devices

VBias (V)

Coulomb diamonds visible up to 250K

Mickal Perrin, ETHZ, Empa, ERC starting grant

Zhang et al. Nano Letter 2023




Summary @Empa

m Physics and chemistry are the base of interdisciplinary, energy-
related material science

m Bifacial Solar Cells as way to increase efficieny

m Thin-film batteries strive for high power & energy density at same
time

m Exploratory new methods like quantum heat engines are at the
horizon as a new generation of thermoelectric generators.
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