

FACULTÉ DES SCIENCES

PSI

Influence of Oxygen Source on the High Magnetic Field Behavior of Nb₃Sn Wires Manufactured via Internal Oxidation

Gianmarco BOVONE, Florin BUTA, Francesco LONARDO, Marco BONURA,

and Carmine SENATORE

Department of Quantum Matter Physics, University of Geneva, Switzerland Department of Nuclear and Particle Physics, University of Geneva, Switzerland

David LeBoeuf and Xavier Chaud

CNRS - LNCMI Grenoble, France

Camelia N. BORCA and Thomas Huthwelker

PSI, Phoenix Beamline, Switzerland

Simon C. HOPKINS and Thierry BOUTBOUL

CERN, Switzerland

Swiss National Science Foundation

Swiss Accelerator Research and Technology

- Why low temperature superconductors have still their word to say!
- The internal oxidation process
- Enhancement of Nb₃Sn superconducting properties
- High magnetic field measurements (done and to do)
- Morphological overview of Nb₃Sn and precipitates

Magnetic field for material research and materials for high-magnetic fields

"The solution of the problem of obtaining a field of 100000 Gauss (10 T) could then be obtained by a coil of say 30 cm in diameter and the cooling with a plant which could be realized in Leiden with a relatively modest financial support" H. K. Onnes, 3rd International Congress on Refrigeration (1913)

TABLE I. Critical constants for superconducting mercury.

Sample	${T_e \choose {^\circ \mathbf{K}}}$	H ₀ (gauss)	γ millijoules/mole°K ²
Hg-1 Hg-3 Hg-4 Hg-5	$\begin{array}{c} 4.1535 {\pm} 0.000 \\ 4.153 \ {\pm} 0.001 \\ 4.1531 {\pm} 0.000 \\ 4.1532 {\pm} 0.0005 \end{array}$	$\begin{array}{c} 415.4{+}0.5,-1.5\\ 415.1{\pm}0.5\\ 414.9{+}0.5,-1.5\\ 414.4{\pm}0.4\end{array}$	$\begin{array}{r} .103 {+} 0.01, -0.04 \\ .088 {\pm} 0.01 \\ .108 {+} 0.01, -0.04 \\ 2.079 {\pm} 0.01 \end{array}$

Wilson M. N. IEEE TAS (2012) 22 3
Finnemore D. K. et al. Physical Review 118 1 (1960)

Nb₃Sn: an old material still to be unraveled

- Matthias B. T. et al. Physical Review 95.6 (1954): 1435.
- Rosner H. et al. IEEE-CSC ESAS Eur. Supercond. News Forum. No. 9. (2012)
- Barzi E and Zlobin A.V. Nb $_3$ Sn Wires and Cables for High-Field Accelerator Magnets(2019)

Rod-type wire manufacturing process (e.g. RRP)

The dominion of Low Temperature Superconductors Nb-Ti has lower properties

3)

6)

C

The Niobium-Titanium alloy (Nb-Ti) was discovered to be a superconductor in 1965, two years after the first Nb₃Sn magnet operating at 10T

compared to Nb₃Sn, but is

easier to wind and manufacture

Extrusion

bonding)

Extrusion

(bonding)

Extrusion

Extrusion

and shar

Extrusion

+ drawing

nd shapin

Since then, Nb-Ti is the backbone of MRI magnets

Magnet

Gradient Coils

Frequency

Radio

Coils

Bore

Sample Table

The dominion of Low Temperature Superconductors

LHC dipole magnet

Fabricated using NbTi wires

LHC had to be updated using Nb₃Sn magnets to have a higher beam focus and enhance the number of collisions

Hi Luminosity LHC quadrupole magnet

Fabricated using Nb₃Sn wires

The future of Nb₃Sn

LHC	FCC-hh	
27 km, 8.33 T	100 km, 16 T	
14 TeV (c.o.m.)	100 TeV (c.o.m.)	
1'300 tons NbTi	~10'000 ton	s Nb ₃ Sn
В [Т]	16	16
J _{op} [A/mm²]	300	600
w [mm]	76	38
A _{coil} [mm²]	20'000	7'000
₽.s.¢	w	

Doubling the operating current density reduces the superconductor area to one-third!

- Boutboul et al., IEEE TASC 19 (2009) 2564

Nanometrical control of Nb₃Sn grains

Movement of flux lines causes dissipation, detrimental for power applications. The flux line lattice must remain pinned to pinning centers (e.g., grain boundaries, or defects)

 $J_c = \frac{f_p}{\phi_0}$

Higher the pinning force, higher the critical current density

The pinning mechanism in Nb₃Sn is due to grain boundary pinning, and grain refinement can enhance J_c

Grain refinement induced by ZrO_2 precipitation

Internal oxidation process

What happens during heat treatment

During heat treatment, grains continue to grow and join together when their boundaries are in contact

Internal oxidation process

What happens during heat treatment

Oxygen reacts with the third element (with a higher affinity for oxidation)

ZrO₂ (or HfO₂) nanoparticles prevent grains from joining together, keeping the grain size small

First proposed in 1968 for tape samples due to the easier introduction of oxygen. It was "impossible" to implement in round conductors: oxygen in alloy is detrimental to wire deformation The first wire with internal oxidation was fabricated in 2014, using a separate oxygen source to allow wire deformation

- Benz M. G. Transaction of the Metal. Soc. of AIME 242 (1968) - Xu X. et al. Applied Physics Letters 104.8 (2014): 082602)

Magnetic field, B, T

Evolution of layer J_c at high magnetic field

0

Δ

10

5

15

μ₀Η (T)

20

25

(a)

25

26

- New wires designs
- Multifilamentary wires
- Introduction of Ta in Nb alloy
- Enhancement of J_c,
 F_p (max) and B_{c2}

27

Magnetic field, B, T

28

29

30

Simplified multifilamentary wires layout and fabrication process

Effects of the internal oxidation on the superconducting properties

The FCC target for layer J_c is calculated based on the area fraction of reacted Nb₃Sn in a typical rod-type wire

- Bovone G. et al. Superconductor Science and Technology 36.9 (2023): 095018.

FACULTY OF SCIENCES DEPARTMENT OF QUANTUM MATTER PHYSICS

12

Core-OS Annular-OS 28.97 ± 0.38 29.20 ± 0.38 29.0 ± 0.36 29.32 ± 0.36 N/A UNIVERSITÉ 13 DE GENÈVE

10K

16K

15

20

 $B_{c2}(T)$

4.2 K, 99 % R

25

30

 $B_{c2}(T)$ 4.2 K, 99 % R

 $F_p = J_c \times B$

What drives the enhancement?

- Bovone G, et al. *Superconductor Science and Technology* 36.9 (2023): 095018

 $B/B_{2}(1\%)$

XANES investigation on precipitates

Bovone G et al. *IEEE Transactions on Applied Superconductivity* 34.3 (2024),6000205.

FACULTY OF SCIENCES DEPARTMENT OF QUANTUM MATTER PHYSICS

Nb₃Sn

tion lavor

What did we learn from XANES?

Nb₃Sn compared to Nb

form of ZrO_2 , but changes in the spectra suggest modifications induced by oxygen diffusion. Clusters?

2230

0.0

2210

2220

2240

2250

Heat treatment optimization: reaction layer thickness

Heat treatment (HT): 550°C × 100 h + 650°C × 200 h

No OS

With OS

Drastic reduction of Nb₃Sn layer thickness when OS is added

Higher temperature to enlarge Nb₃Sn layer thickness keeping grain size low

Significant increase of layer thickness at 700 °C

With OS 700 °C × 50 h

700 °C × 100 h

Problems in pinning mechanism analysis

 $b = \frac{B}{B_{c2}}$

To determine the pinning mechanism, we need to precisely locate the position of the F_p peak in the reduced field (b)

Problems in pinning mechanism analysis

Conclusions

- We successfully **enhanced the layer J**_c above the **FCC specifications**, **record-high B**_{c2} and change **of**

pinning mechanism (point defect) when Oxygen Source is present, for wires reacted at 650 °C

- <u>X-Rays Absorption Near Edge Structure (XANES)</u> on Nb₃Sn wires <u>with and without OS</u> show the presence of <u>ZrO₂ only in the Nb₃Sn layer</u> and not in the unreacted alloy
- The layer J_c (16 T, 4.2 K) is strongly enhanced by the shift of F_p(max) to a higher magnetic field, due to

<u>B</u>_{c2} enhancement and/or a **modified pinning mechanism**

- Internal oxidation is the most effective way to reduce grain size, enhance B_{c2} and modify the
 pinning mechanism
- Despite its "age", <u>Nb₃Sn</u> can still <u>play a role</u> in the future generation of <u>high magnetic field magnets</u>

Thank you for

your attention

But are precipitates necessary?

Precipitates reduce Nb_3Sn grain size through the Zener drag effect

$$R = \frac{4r}{3f}$$

- $R = Maximum Nb_3Sn grain radius$
- r = precipitates radius
- f = precipitates volumetric fraction

Some groups observed grain refinement without the addition of an oxygen source

Is the refinement observed here enough to reach the FCC target?

- Bovone G et al. IEEE Transactions on Applied Superconductivity 34.3 (2024),6000205.
- Xu X et al. Scripta Materialia 186 (2020): 317-320.
- Asai K et al. IEEE Transactions on Applied Superconductivity 34.5 (2024), 8600105
- Balachandran S et al. Journal of Alloys and Compounds 984 (2024): 173985.

- Godeke A. Superconductor Science and Technology 19.8 (2006): R68.

- Fischer C. Master's Thesis Univ. of Wisconsin-Madison (2002).

- Balachandran S et al. Superconductor Science and Technology 32.4 (2019): 044006.

FACULTY OF SCIENCES DEPARTMENT OF QUANTUM MATTER PHYSICS

UNIVERSITÉ 22 DE GENÈVE

- Lonardo F et al. IEEE Transactions on Applied Superconductivity (2024).

- Xu X et al. Scripta Materialia 186 (2020): 317-320.

- Xu X et al. arXiv preprint arXiv:1411.5397 (2014)

Combined behavior

The FCC target at 16 T and 4.2 K is reached when both grain size is refined and $F_p(max)$ is shifted at higher magnetic field

Internal oxidation is fundamental to reach the FCC target due to grain refinement, B_{c2} enhancement, and modification of pinning mechanism

- Balachandran S et al. Superconductor Science and Technology 32.4 (2019): 044006.
- Xu X et al. Scripta Materialia 186 (2020): 317-320..
- Fischer C. Master's Thesis Univ. of Wisconsin-Madison (2002).
- Bovone G et al. Superconductor Science and Technology 36.9 (2023): 095018
- Lonardo F et al. IEEE Transactions on Applied Superconductivity 34.5 (2024), 6000305
- Xu X et al. arXiv preprint arXiv:1411.5397 (2014).

