Neutrino Interaction Classification in SND@LHC based on Graph Neural Network

Konstantin Androsov, Jan Steggemann, Lesya Shchutska, Zhibin Yang

Zhibin Yang

Scattering and Neutrino Detector at the LHC

Introduction

- Neutrino from LHC

EPFL

- Large flux in the forward region
- SND(a)LHC (7.2 < η < 8.4) and FASER ν (η > 9)

SND*a***LHC Detector** - **Layout**

5x Emulsion/W

walls

2x Veto

planes

1,0 m

• Veto System

EPFL

- 2 veto planes to tag charged particles
- Vertex Detector and ECAL
 - 5 walls of Emulsion Cloud Chambers (ECC) with tungsten
 - Each follow by a **Scintillating Fibre (SciFi)** plane
- Muon system and HCAL
 - 8 plastic scintillator planes interleaved with eight iron walls
 - High-granularity in the Downstream planes (The last 3 planes)

VERTEX DETECTOR AND ELECTROMAGNETIC CALORIMETER HADRONIC CALORIMETER AND MUON SYSTEM

SND(*a*)**LHC Detector** - **Electronic** and **Emulsion**

Emulsion

Scintillating Fibre (Electronic signal)

Zhibin Yang

SND@LHC wall

Neutrino Signature

- Vertex Detector and ECAL
 - EM shower
 - Secondary vetex of τ
- Muon system and HCAL
 - Muon Track
 - Hadronic shower

Zhibin Yang

Background - Muon and Neutral Hadron

- Muon Background
 - Generate showers via bremsstrahlung or deep inelastic
 - Can be tagged by Veto
- Neutral Hadron

EPFL

- Muon-induced neutral particles (mainly neutron And kaon)
- Mimic a neutrino interaction
 - Charm production
 - Decay in flight

Muon DIS

Muon EM

Dataset and Approach

- Identifying ν_{ρ} interaction events is the current priority
- Monte Carlo simulation Data set
 - ~ 300 k neutrinos

EPFL

- ~ 30 million neutral background
- Graph Neural Network (GNN)
 - Hits from electronic detector as nodes
 - Relation between hits as edges
 - End-to-End and multi-classification model

bool orientation; // true for vertical (1), false for horizontal (0) float x1, y1, z1; // coordinates of one end float x2, y2, z2; // coordinates of the other end // detector type 0: scifi, 1: veto, 2: us, 3: ds int detType;

[arXiv:2008.03601]

Evaluation

- Observed 8 neutrino event candidates with a statistical significance of 6.8 σ using 2022 data. The backgrounds from penetrating muons and neutral hadrons background amount to 0.086 events
- Efficiency and Yield

$$\epsilon = \frac{N_{pass}}{N_{total}}$$

• $Yield = N_{epected} \times \epsilon$

	Data	Signal simulation
All	8.4×10^{9}	157
Fiducial volume	4.9×10^{5}	11.9
One muonlike track	17	6.1
Large SciFi activity	13	5.1
Large hadronic activity	12	4.7
Low muon system activity	8	4.2

Number of events passing the selection cuts in the data and signal simulation [PRL 131, 031802]

Neutrino and Neutral Hadron

Zhibin Yang

Muon Background in Progress

- The overall veto system **inefficiency** during the 2022 run is the luminosity-weighted average of the two periods, amounting to 4.5×10^{-4}
- **Expected** penetrating muons $\sim 5.48 \times 10^5$
- Due to the lack of MC muon background, real data tagged by veto system are used to estimate the muon yield
- Baseline model is not trained with muon data

Summary

- We try to identify neutrino interaction out of background at SND(a)LHC using GNN • Current model has promising results on identifying ν_{μ} and ν_{e} against neutral background.
- Further work need to be done on muon background rejection.

Thank You!

Zhibin Yang

Back Up

Extra Training Features

Weight

> Interaction Rate Normalized w =Number of Training Event

• Event features (reconstructed muon track)

Zhibin Yang

Neutrino and Neutral Hadron - Weight

Zhibin Yang

• Can not conclude that normalized weight improve the selection results nor the other way.

Neutrino and Neutral Hadron - RecoTrack

• Reconstructed track makes worse on ν_{μ} selection, but improves ν_{e} selection

Zhibin Yang

ν_{μ} Selection XY distribution

2D Distribution of scifi_avg_ver and scifi_avg_hor

Zhibin Yang

EPFL

2D Distribution of DS_avg_hor and DS_avg_ver

Zhibin Yang

