Swiss Physical Society Meeting September 13th 2024, ETH, Zurich

Latest results from the X E N O N n T dark matter experiment

Paloma Cimental (University of Zurich) on behalf of the XENON Collaboration

The XENON collaboration

~170 Scientists 29 Institutions 12 countries

..... ,,,,,,,,,

XENON10 2005 25 Kg LXe

XENON100 2008 160 Kg LXe

XENON1T 2016 3200 Kg LXe

Signals:

- Prompt scintillation light (**S1**) in liquid xenon (LXe) • Secondary light (**S2**) in gas xenon (GXe) from ionisation charges
-

Dual-phase Time Projection Chamber (TPC) technology provides:

Direct dark matter detection

- 3D position reconstruction
	- x y from **S2** top photosensor pattern
	- z from **S1-S2** time delay
- . Energy reconstruction from: $E \propto ($ S1 g1 + S2 $\frac{1}{92}$
- Discrimination of electronic and nuclear recoils using the **S1**/**S2** signal ratio

Main detection channel: coherent elastic WIMP - nucleus scattering

The XENONnT experiment

Water Cherenkov Muon Veto (MV)

Gd-loaded water Cherenkov Neutron Veto (NV)

- ~10 x 10 m diameter \times height
- **• 84** PMTs (8'' Hamamatsu R5912-ASSY)

LXe Time Projection Chamber (TPC)

- ~2 x 3 m radius × height
- **• 120** PMTs (8'' Hamamatsu R5912)
-

• 0.05% GdSO concentration (since 2023)

- **• 5.9 t** active LXe mass
- 1.3 x 1.5 m diameter \times height
- **• 494** PMTs (3'' Hamamatsu R11410-21)
- **• 23 V/cm** electric drift field
- **• 2.9 kV/cm** extraction field

The first two science runs

Time [YYYY-MM, UTC]

• Data taken between July 2021 and August 2023

• ~316 days of exposure

• Stable detector response

- Light yield <1 % variation
- Charge yield <3 % variation
- **• High liquid xenon purity**
	- Electron survival probability > 90% at the maximum drift length
- **Regular calibrations** to study detector response and light/charge gains

4 Paloma Cimental | Swiss Physical Society Meeting | September 13th 2024, ETH, Zurich

Physics results so far

[Phys.Rev.Lett. 129 \(2022\) 16, 161805](https://inspirehep.net/literature/2122386) [Phys.Rev.Lett. 131 \(2023\) 4, 041003](https://inspirehep.net/literature/2646104) [arXiv:2408.02877](https://arxiv.org/abs/2408.02877)

ER channel MR WIMP dark matter δ B solar neutrinos 8

2022 2023 2024

SR0 SR0 SR0 + SR1

Physics results so far

........

Elastic Scattering of Dark Matter and Neutrinos

PHYSICAL REVIEW D

VOLUME 9, NUMBER 5

Coherent effects of a weak neutral current

Daniel Z. Freedman[†] National Accelerator Laboratory, Batavia, Illinois 60510 and Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11790 (Received 15 October 1973; revised manuscript received 19 November 1973)

If there is a weak neutral current, then the elastic scattering process $\nu + A \rightarrow \nu + A$ should have a sharp coherent forward peak just as $e + A \rightarrow e + A$ does. Experiments to observe this peak can give important information on the isospin structure of the neutral current. The experiments are very difficult, although the estimated cross sections (about 10⁻³⁸ cm² on carbon) are favorable. The coherent cross sections (in contrast to incoherent) are almost energy-independent. Therefore, energies as low as 100 MeV may be suitable. Quasicoherent nuclear excitation processes $\nu + A \rightarrow \nu + A^*$ provide possible tests of the conservation of the weak neutral current. Because of strong coherent effects at very low energies, the nuclear elastic scattering process may be important in inhibiting cooling by neutrino emission in stellar collapse and neutron stars.

- **CE NS**: **C**oherent **E**lastic **N**eutrino **N**ucleus **S**cattering *ν*
- $^{\circ}$ B CE ν NS typical recoil energy \leq 1.5 keV 8 B CE*L* NS typical recoil energy \leq 1.5 keV_{NR}
	- \cdot Almost indistinguishable signature from 5.5 GeV/c² WIMP
- First measured by COHERENT (2017) using a spallation neutron source
-

1 MARCH 1974

• Lowering the energy threshold is essential to increase the signal acceptance

- Model detector response to low-energy NRs
- Suppress and constrain increased background

.

Search for solar ⁸**B CE***V***NS**

YBe Low energy NR calibration ⁸⁸

- 152 keV neutrons from ^{oo}YBe source 88
- Excellent match between simulations and calibration data
- Models to predict the light and charge yield in the 8 B CE ν NS energy range at the XENONnT drift field

Search for solar ⁸**B CE***V***NS**

Regions of interest and energy threshold

- S1 signal ROI: [2, 3] hits
	- An S1 hit corresponds to a detected photon
	- ⁸B CEL/NS rarely produces signals with over 3 hits

S1 and S2 lower threshold reduced to increase detected ⁸B CE_{*V*}NS by ~17 times compared to conventional analysis

- S2 signal ROI: [120, 500] photoelectrons (PE)
	- Corresponds to 4 16 extracted electrons
	- Upper threshold to remove ER background from *β* and *γ* radiation

Search for solar ⁸**B CE***V***NS**

Main background: Accidental Coincidence (AC)

• Random unphysical pairing of isolated **S1** and **S2**

Suppression Suppression
strategy

• Isolated S1/S2 are thought to be byproducts of high-energy interactions

Δt

• Selections based on correlation with their preceding HE peak

- S1 and S2 Boosted Decision Tree (BDT) classifiers using signal shape properties to discriminate signal from ACs
- **• 4-D space search for better discrimination power in cS2, S1 BDT, S2 BDT, TimeShadow parameters**

TimeShadow
$$
\equiv
$$
 Max $\left(\frac{S2_{\text{prev}}}{\Delta t_{\text{prev}}}\right)$ **S1**

Prediction before unblinding

Total exposure: **3.51** ton year ⋅ Expect ⁸B CE*ν*NS: **11.9**^{+4.5} events -4.2

Unblinding results

Data agrees with the signal + background expectation in the four-dimension analysis

Unblinding results

The background-only hypothesis is disfavoured at 2.73*σ*

[Phys.Rev.Lett. 92 \(2004\) 181301](https://inspirehep.net/literature/627646)

- Measured ${}^{\circ}$ B neutrino flux: 4.7 $^{+3.0}_{-2.3}$ \times 10 8 B neutrino flux: 4.7 $^{+3.6}_{-2.3}$ \times 10⁶ cm⁻² · s⁻¹
- Flux measurement in agreement with SNO (2013)

Summary

• **XENONnT performed a blind search for** 8 **B CE** ν **NS**

- \cdot 2.73 σ discovery significance • Measured ${}^{\circ}$ B neutrino flux: 4.7 ${}^{+3.0}_{-2.3}$ \times 10 8 B neutrino flux: 4.7 $^{+3.6}_{-2.3}$ \times 10⁶ cm⁻² · s⁻¹
- First detected astrophysical ν in a dark matter detector
- First measured CE*ν*NS from astrophysical *ν* source
- **· First** measured CEL/NS with a Xe target

• XENONnT keeps taking data: **stay tuned for more results…**

