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Synchrotrons
Key features




What is a synchrotron?

= Large-scale facility for generating high-intensity electromagnetic radiation
= Most commonly in range of VUV to hard x-rays; also down to IR in some cases

= “Synchrotron radiation”

= Key features of SR

= Brightnesses many orders of magnitude greater than can be provided by lab-based x-ray sources

Extremely collimated beams

Extremely narrow beams

Tunability of the photon energy
= e.9.,, SLS 2.0: = 5eV to >80 keV

Multiple experiments (“beamlines”) around the closed-loop structure of a synchrotron ~ 10 — 100

= SR used extensively in macromolecular structural studies (“raison d’'étre” for SR!!




Architecture of a synchrotron

JF Santarelli, Creative commons
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Architecture of a synchrotron

e-gun
and LINAC
~ 100 MeV



Architecture of a synchrotron
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Architecture of a synchrotron
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Architecture of a synchrotron

IDs
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Also:
Quadrupoles
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RF power
BPMs




Architecture of a synchrotron

Beamlines
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Architecture of a synchrotron
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Beamlines

Endstation

X-ray optics:
Mirrors
Monochromators

Front end

ID (undulator) x-ray source




Brilliance - the synchrotron figure of merit

[ph/s]
[mm?2 mrad?][0.1 % BW]

Units:

A\ g

g, emittance = size x divergence (both x- and y-directions)




ph/s

Brilliance (less whimsically)

* o (source size) and ¢’ (source divergence)
have contributions from both the electron
beam and the photon beam

= Photon part fundamental (diffraction limit)
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= 31 generation (SLS)
S~ = Dominated by electron beam: € > €
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\ = 4 generation (DLSR, SLS 2.0)

= Electron and photon contributions similar
= = collimated AND small x-ray beams




Small-emittance DLSR-beams for MX

3rd-generation
synchrotrons

Either: high resolution — focus on detector
= wasted photons

Or: small sample — focus on sample
= blurred diffraction patterns

DLSRs — best of both worlds




Fourth-generations synchrotrons
Diffraction-limited storage rings - SLS 2.0




Double-bend achromats at synchrotrons

= Main limit to reducing emittance due to spread induced at bending-magnet achromats
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What defines a DLSR (4th generation synchrotron)?

= Increase brilliance by decreasing emittance in electrons’ orbital plane (g,)
= How?

= For a given arc sector, use more bending magnets (M): “multibend achromat” (MBA)
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Why only now?

= Using large 3-generation magnets would result in
= An unacceptable increase in ring circumferences
= Unavoidable alignment errors

= Reduce

= Magnet sizes
= More compact -=

= Reduces B

= Distances between magnet poles
= Increases again B -=

= Small vacuum vessels
= Difficult to pump
= Require special “NEG” coating
= Porous alloys of Al, Ti, Fe, V, Zr

Pump

34 generation

DLSR




SLSvSLS 2.0
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Arc sector (30°)
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SLS: Total # magnets = 388; ¢, = 5500 pm.rad
SLS 2.0: Total # magnets = 1007; &, = 157 pm.rad (ca. 35 x smaller)




SLSvSLS 2.0

- PS I Center for
3 Photon Science




Further benefits of the small beams at DLSRs

X-ray source (“undulators”)
= Smaller beam width

= smaller magnet dimensions

= reduced magnetic forces
= “Force compensation” possible

= smaller gap = more intensity & higher hv

= more compact and stable designs

cold soldering
poles

magnets

ok (C) Force Top - Bottom

without force compensation

-20 Z
N
w

with force compensation

gap [mm]

X-ray optics
= Smaller beam cross-sections

= = smaller dimensions of
= X-ray mirrors

= diffracting elements (crystals, gratings,
multilayers)

= = more compact, lighter x-ray optics
components

= = greater stability, less vibrations




SLS vSLS 2.0 performance enhancements in numbers
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Macromolecular structure determination at DLSRs
A bright future with complementary competition




The new kids on the block

= <2012, MX enjoyed near total dominance

= ~ 1980 — 2010: Developments in cryoEM
= detectors }

Resolution
= sample pre
] imagpe aﬂmf,’sis breakthrough ~ 3 A
= CASP14 (Nov. 2020): Alphafold2

= Al program (DeepMind, Google)

= Predicts structure from amino-acid sequence
alone

= Based on PDB database

= 2022: structures uploaded of ~200 million
proteins from 1 million species, covering nearly
every known protein on the planet

<2012: > 2012: Experiment
“Blobology” hi-res cryoEM Alphafold2

PS I Center for
Photon Science



MXv cryoEM... so far (up to September 2024)
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cryoEM
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Alphafold2 et al.

= Critical Assessment of Protein Structure Prediction
CASP14, Nov. 2020

= Metric: Global distance test — global score (GDT-TS)

Global Distance Test
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O PREDICTION

GDT

40

Extracted from 20

= Percentage of well-modelled residues w.r.t. target

= 90% is (was!) the holy grail

CASP7 CASP8 CASP9  CASPIO CASP11  CASP12
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https://www.youtube.com/watch?v=gg7WjuFs8F4&t=149s

Alphafold2 in a nutshell

Amino-acid
sequence repository

Amino-acid sequence
of unknown structure
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Alphafold2 in summary

Phase problem essentially solved!
MIR, MAD, SAD, etc. no longer needed
Molecular replacement (MR) still workhorse

Refinement of Alphafold2 predictions
= |s crystal structure = in-vivo structure?

July 2024: Number of proteins solved by
Alphafold2 since November 2020...

> 200'000°000!

= 35% “highly accurate”

1 million species = 45% “sufficiently accurate for many applications”
y y

Images: creative commons and PRW



https://www.nature.com/articles/d41586-022-02083-2

Atomic resolution in structure determination

= A spatial resolution of approximately 2 A or better is
required to resolve individual atoms within a protein
structure
= At this resolution:
» |ndividual atoms and their positions can be
distinguished
= The electron density map is detailed enough to identify
the atomic structure, including side chains of amino
acids
= Bond lengths and angles can be accurately measured
= For very high-resolution structures, resolutions better
than ca. 1.5 A are needed
= Provides even more precise details about the atomic

arrangement
= ca. 1 A resolution allows identification of hydrogen

atoms, which are typically challenging to resolve at
lower resolutions

Image from:

PS I Center for
Photon Science



https://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/resolution

Membrane proteins and GPCRs

= Membrane proteins
= Relay signals between cell’s internal and external

environments
= Transfer chemicals across cell membrane
= Molecular weights ~ 10 to over 200 kDa

= G-protein-coupled receptors (GPCRs)

= Recognize a wide variety of stimuli
= Photons, ions, proteins, neurotransmitters, hormones...

= Activate cellular responses
= Molecular weights ~ 40 to 100 kDa

See also Michael Hennig 16:00, 11.09.2024
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Serial Synchrotron Crystallography (SSX) @ DLSRs

= Membrane proteins RT-SSX
= 1/3 of all proteins
= 2/3 of medicinal drug targets
= 1 - 2% of all MX-solved structures!

= Why so under-represented?
= Hydrophobic, hard to crystallize
= Often micron-sized, poor quality
= Improve using lipid cubic phase (LCP)
= Serial synchrotron crystallography (SSX)
= RT or cryo
= Conformational landscapes (3D shape)

= Dynamics down to us RT-SSX @ PXI, SLS, 2017
= Uses much less material than SFX @ XFELs

AR

Weinert et al., Nature Comms. 8 542 (2017)



https://www.nature.com/articles/s41467-017-00630-4

Requirements for fragment screening

Precise location and orientation of SMALL fragment
on LARGE biological target

= High resolution ~ 1.8 A or better

Fast throughput (100’s of samples)
= @ SLS 2.0
= ca. 30+ fragment samples/hr
= ca. 10 minutes/structural solution (local)
= Bottleneck — use off-site supercomputers

Requires automation!!
= 2025 onwards: ~ 10 — 100 TB/day!!

Resolution and time-consuming structural solutions
make cryoEM unsuited to fragment screening

a-ketoamide inhibitor with
SARS-CoV-2 main protease
1.95 A, PDB 6Y2F

3 PSI Center for
¢ B ¥ 0 Photon Science



https://www.science.org/doi/10.1126/science.abb3405

Requirements for fragment screening

Resolution [A]
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MX @ SLS and SLS 2.0

= Three beamlines

= 2001: PXI - ID beamline: mainly scientific research, cutting-edge
developments; some industry

= 2004: PXII — ID beamline: exclusively proprietary and drug

discovery beamtime. Funded by industry

= 2007: PXIIl — SB beamline: partly research, diffraction screening,
phasing, industry. Upgraded BL completed in 2023, first users!!

= July 315t 2024: the 10°001st PDB entry from SLS registered!

* Most # PDB entries/year/BL worldwide
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MX @ SLS and SLS 2.0

= SLS 2.0 — hi-speed, automated, intelligent learning
> 10% A O sLs
g '?\ M sLs20
3 101
Sample delivery Data catalog ™ %
) \
U Beamline users % 1013 &;§~\ \
MX@SLS ® —i E,/ < T PXIl
Sequential with Beamiine (B } o5 ~ ~
automation ’ : sclentlst =4 ‘ - - 5 10 PXI -
- o0 = = 2%y % 0
: -7 2l ‘V/ 5 = 101 PXIII
Q — Q 4 Data acquisition  Data analysis v"‘;,"
Beam delivery and controls Structures 1 10 100
u u u Beam size(pm)
MX@SLS 2.0
Integrated with Intelligent device Task-specific Al-powered
“intelligence” Machine Learning Hardware Software

“Digital beamline scientist & digital user”

3 PS I Center for
3 Photon Science




MX@SLS 2.0 - “13”

/ High-speed hi-res crystallography, ~ 1 s/sample\ /Serial synchrotron crystallography of ~ 1-um crystalﬁ

Mounting Centering Data collection Data processing

~ 1000/s
~ 1000 fps

Data analysis,
——— - storage,
and archiving

Automated and unattended SARS-CoV-2 nucleocapsid

\ data collection Jungfrau 4M, 2 kHz

Efficient fragment screening /

Crystal production
and delivery

Time-resolved

Drug discovery m serial crystallography
" downto~1ps Dynamics
(Exploling Alphatold J) Conformational ensembles
P and changes
azo-cis-Combretastatin A4 RT and Cryo

Detector developments
in-house

a-tubulin

SFX & SSX@ PSI

L
\ See also Michael Hennig 16:00, 11.09.2024

PS I Center for
Photon Science



https://blog.google/technology/ai/google-deepmind-isomorphic-alphafold-3-ai-model/

MX @ SLS 2.0 and machine learning for drug design

= Predictive vs. experimental validation:
= Al/machine learning:
* Predicts static structures with high accuracy
= No physiological information about the dynamic nature or how proteins interact with ligands, etc.
= Not (yet) reliable re. details of potential binding sites or how different ligands interact with these sites
= Generates initial structure models and potential binding sites = speeds up preliminary stages of drug discovery
= MX fragment Screening:
= Directly observes how and where small chemical fragments bind to a target protein — crucial for drug discovery!
= Helps identify binding sites, understand binding affinities
= Guides the design of more potent and selective compounds
= Can identify conformational flexibility
= Provides insights into how binding events can induce structural changes/dynamics
= Important for understanding the full range of a protein's functional states
= Essential experimental validation of predictive Al models
= Summary
= Al algorithms are transformative tools for predicting protein structures
= Fragment screening in MX remains a vital experimental tool
= These two methods are complementary: Al-driven predictions provide valuable initial insights that

guide experimental validation and optimization in drug discovery
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Synchrotron/XFEL massive open online courses (MOOCs)

EPFL: two six-week Massive Open Online Courses (MOOCs)
= |ntroduction to synchrotron and XFEL radiation — Part 1

= |ntroduction to synchrotron and XFEL radiation — Part 2



https://www.edx.org/learn/physics/ecole-polytechnique-federale-de-lausanne-synchrotrons-and-x-ray-free-electron-lasers-part-1
https://www.edx.org/learn/physics/ecole-polytechnique-federale-de-lausanne-synchrotrons-and-x-ray-free-electron-lasers-part-2

© Nick Veasey2011




Brilliance since Rontgen
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